
What I Wish I Knew When Learning Haskell

2

Chapter 1

Basics

1.1 What is Haskell?
At its heart Haskell is a lazy, functional, statically-typed programming language with advanced type
system features such as higher-rank, higher-kinded parametric polymorphism, monadic effects, generalized
algebraic data types, ad-hoc polymorphism through type classes, associated type families, and more. As
a programming language, Haskell pushes the frontiers of programming language design more so than any
other general purpose language while still remaining practical for everyday use.

Beyond language features, Haskell remains an organic, community-driven effort, run by its userbase
instead of by corporate influences. While there are some Haskell companies and consultancies, most are
fairly small and none have an outsized influence on the development of the language. This is in stark
contrast to ecosystems like Java and Go where Oracle and Google dominate all development. In fact, the
Haskell community is a synthesis between multiple disciplines of academic computer science and industrial
users from large and small firms, all of whom contribute back to the language ecosystem.

Originally, Haskell was borne out of academic research. Designed as an ML dialect, it was initially
inspired by an older language called Miranda. In the early 90s, a group of academics formed the GHC
committee to pursue building a research vehicle for lazy programming languages as a replacement for
Miranda. This was a particularly in-vogue research topic at the time and as a result the committee
attracted various talented individuals who initiated the language and ultimately laid the foundation for
modern Haskell.

Over the last 30 years Haskell has evolved into a mature ecosystem, with an equally mature compiler.
Even so, the language is frequently reimagined by passionate contributors who may be furthering academic
research goals or merely contributing out of personal interest. Although laziness was originally the major
research goal, this has largely become a quirky artifact that most users of the language are generally
uninterested in. In modern times the major themes of Haskell community are:

• A vehicle for type system research
• Experimentation in the design space of typed effect systems
• Algebraic structures as a method of program synthesis
• Referential transparency as a core language feature
• Embedded domain specific languages
• Experimentation toward practical dependent types
• Stronger encoding of invariants through type-level programming
• Efficient functional compiler design
• Alternative models of parallel and concurrent programming

Although these are the major research goals, Haskell is still a fully general purpose language, and it
has been applied in wildly diverse settings from garbage trucks to cryptanalysis for the defense sector
and everything in-between. With a thriving ecosystem of industrial applications in web development,
compiler design, machine learning, financial services, FPGA development, algorithmic trading, numerical

3

BASICS 4

computing, cryptography research, and cybersecurity, the language has a lot to offer to any field or software
practitioner.

Haskell as an ecosystem is one that is purely organic, it takes decades to evolve, makes mistakes and
is not driven by any one ideology or belief about the purpose of functional programming. This makes
Haskell programming simultaneously frustrating and exciting; and therein lies the fun that has been the
intellectual siren song that has drawn many talented programmers to dabble in this beautiful language at
some point in their lives.

See:

• A History of Haskell
• Wearing the Hair Shirt: A Retrospective on Haskell

1.2 How to Read
This is a guide for working software engineers who have an interest in Haskell but don’t know Haskell
yet. I presume you know some basics about how your operating system works, the shell, and some
fundamentals of other imperative programming languages. If you are a Python or Java software engineer
with no Haskell experience, this is the executive summary of Haskell theory and practice for you. We’ll
delve into a little theory as needed to explain concepts but no more than necessary. If you’re looking for
a purely introductory tutorial, this probably isn’t the right start for you, however this can be read as a
companion to other introductory texts.

There is no particular order to this guide, other than the first chapter which describes how to get set
up with Haskell and use the foundational compiler and editor tooling. After that you are free to browse
the chapters in any order. Most are divided into several sections which outline different concepts, language
features or libraries. However, the general arc of this guide bends toward more complex topics in later
chapters.

As there is no ordering after the first chapter I will refer to concepts globally without introducing them
first. If something doesn’t make sense just skip it and move on. I strongly encourage you to play around
with the source code modules for yourself. Haskell cannot be learned from an armchair; instead it can
only be mastered by writing a ton of code for yourself. GHC may initially seem like a cruel instructor,
but in time most people grow to see it as their friend.

1.3 GHC
GHC is the Glorious Glasgow Haskell Compiler. Originally written in 1989, GHC is now the de facto
standard for Haskell compilers. A few other compilers have existed along the way, but they either are
quite limited or have bit rotted over the years. At this point, GHC is a massive compiler and it supports
a wide variety of extensions. It’s also the only reference implementation for the Haskell language and as
such, it defines what Haskell the language is by its implementation.

GHC is run at the command line with the command ghc .

$ ghc --version
The Glorious Glasgow Haskell Compilation System, version 8.8.1

$ ghc Example.hs -o example
$ ghc --make Example.hs

GHC’s runtime is written in C and uses machinery from GCC infrastructure for its native code genera-
tor and can also use LLVM for its native code generation. GHC is supported on the following architectures:

https://dl.acm.org/doi/10.1145/1238844.1238856
http://www.cs.nott.ac.uk/~pszgmh/appsem-slides/peytonjones.ppt?ref=driverlayer.com/web

5 BASICS

• Linux x86
• Linux x86_64
• Linux PowerPC
• NetBSD x86
• OpenBSD x86
• FreeBSD x86
• MacOS X Intel
• MacOS X PowerPC
• Windows x86_64

GHC itself depends on the following Linux packages.

• build-essential
• libgmp-dev
• libffi-dev
• libncurses-dev
• libtinfo5

1.4 ghcup
There are two major packages that need to be installed to use Haskell:

• ghc
• cabal-install

GHC can be installed on Linux and Mac with ghcup by running the following command:

$ curl --proto '=https' --tlsv1.2 -sSf https://get-ghcup.haskell.org | sh

To start the interactive user interface, run:

$ ghcup tui

Alternatively, to use the cli to install multiple versions of GHC, use the install command.

$ ghcup install ghc 8.6.5
$ ghcup install ghc 8.4.4

To select which version of GHC is available on the PATH use the set command.

$ ghcup set ghc 8.8.1

This can also be used to install cabal.

https://www.haskell.org/ghcup/

BASICS 6

$ ghcup install cabal

To modify your shell to include ghc and cabal.

$ source ~/.ghcup/env

Or you can permanently add the following to your .bashrc or .zshrc file:

export PATH="~/.ghcup/bin:$PATH"

1.5 Package Managers
There are two major Haskell packaging tools: Cabal and Stack. Both take differing views on versioning
schemes but can more or less interoperate at the package level. So, why are there two different package
managers?

The simplest explanation is that Haskell is an organic ecosystem with no central authority, and as such
different groups of people with different ideas and different economic interests about optimal packaging
built their own solutions around two different models. The interests of an organic community don’t always
result in open source convergence; however, the ecosystem has seen both package managers reach much
greater levels of stability as a result of collaboration. In this article, I won’t offer a preference for which
system to use: it is left up to the reader to experiment and use the system which best suits your or your
company’s needs.

1.6 Project Structure
A typical Haskell project hosted on Github or Gitlab will have several executable, test and library
components across several subdirectories. Each of these files will correspond to an entry in the Cabal file.

.
��� app # Executable entry-point
� ��� Main.hs # main-is file
��� src # Library entry-point
� ��� Lib.hs # Exposed module
��� test # Test entry-point
� ��� Spec.hs # Main-is file
��� ChangeLog.md # extra-source-files
��� LICENSE # extra-source-files
��� README.md # extra-source-files
��� package.yaml # hpack configuration
��� Setup.hs
��� simple.cabal # cabal configuration generated from hpack
��� stack.yaml # stack configuration
��� .hlint.yaml # hlint configuration
��� .ghci # ghci configuration

7 BASICS

More complex projects consisting of multiple modules will include multiple project directories like
those above, but these will be nested in subfolders with a cabal.project or stack.yaml in the root of the
repository.

.
��� lib-one # component1
��� lib-two # component2
��� lib-three # component3
��� stack.yaml # stack project configuration
��� cabal.project # cabal project configuration

An example Cabal project file, named cabal.project above, this multi-component library repository
would include these lines.

packages: ./lib-one
./lib-two
./lib-three

By contrast, an example Stack project stack.yaml for the above multi-component library repository
would be:

resolver: lts-14.20
packages:
- 'lib-one'
- 'lib-two'
- 'lib-three'

extra-package-dbs: []

1.7 Cabal
Cabal is the build system for Haskell. Cabal is also the standard build tool for Haskell source supported
by GHC. Cabal can be used simultaneously with Stack or standalone with cabal new-build.

To update the package index from Hackage, run:

$ cabal update

To start a new Haskell project, run:

$ cabal init
$ cabal configure

BASICS 8

This will result in a .cabal file being created with the configuration options for our new project.
Cabal can also build dependencies in parallel by passing -j<n> where n is the number of concurrent

builds.

$ cabal install -j4 --only-dependencies

Let’s look at an example .cabal file. There are two main entry points that any package may provide:
a library and an executable . Multiple executables can be defined, but only one library. In addition,
there is a special form of executable entry point Test-Suite , which defines an interface for invoking unit
tests from cabal .

For a library, the exposed-modules field in the .cabal file indicates which modules within the package
structure will be publicly visible when the package is installed. These modules are the user-facing APIs
that we wish to expose to downstream consumers.

For an executable, the main-is field indicates the module that exports the main function responsible
for running the executable logic of the application. Every module in the package must be listed in one of
other-modules , exposed-modules or main-is fields.

name: mylibrary
version: 0.1
cabal-version: >= 1.10
author: Paul Atreides
license: MIT
license-file: LICENSE
synopsis: My example library.
category: Math
tested-with: GHC
build-type: Simple

library
exposed-modules:

Library.ExampleModule1
Library.ExampleModule2

build-depends:
base >= 4 && < 5

default-language: Haskell2010

ghc-options: -O2 -Wall -fwarn-tabs

executable "example"
build-depends:

base >= 4 && < 5,
mylibrary == 0.1

default-language: Haskell2010
main-is: Main.hs

Test-Suite test
type: exitcode-stdio-1.0
main-is: Test.hs

9 BASICS

default-language: Haskell2010
build-depends:

base >= 4 && < 5,
mylibrary == 0.1

To run an “executable” under cabal execute the command:

$ cabal run
$ cabal run <name> # when there are several executables in a project

To load the “library” into a GHCi shell under cabal execute the command:

$ cabal repl
$ cabal repl <name>

The <name> metavariable is either one of the executable or library declarations in the .cabal file and
can optionally be disambiguated by the prefix exe:<name> or lib:<name> respectively.

To build the package locally into the ./dist/build folder, execute the build command:

$ cabal build

To run the tests, our package must itself be reconfigured with the --enable-tests flag and the
build-depends options. The Test-Suite must be installed manually, if not already present.

$ cabal install --only-dependencies --enable-tests
$ cabal configure --enable-tests
$ cabal test
$ cabal test <name>

Moreover, arbitrary shell commands can be invoked with the GHC environmental variables. It is quite
common to run a new bash shell with this command such that the ghc and ghci commands use the
package environment. This can also run any system executable with the GHC_PACKAGE_PATH variable set to
the libraries package database.

$ cabal exec
$ cabal exec bash

The haddock documentation can be generated for the local project by executing the haddock command.
The documentation will be built to the ./dist folder.

https://www.haskell.org/ghc/

BASICS 10

$ cabal haddock

When we’re finally ready to upload to Hackage (presuming we have a Hackage account set up), then
we can build the tarball and upload with the following commands:

$ cabal sdist
$ cabal upload dist/mylibrary-0.1.tar.gz

The current state of a local build can be frozen with all current package constraints enumerated:

$ cabal freeze

This will create a file cabal.config with the constraint set.

constraints: mtl ==2.2.1,
text ==1.1.1.3,
transformers ==0.4.1.0

The cabal configuration is stored in $HOME/.cabal/config and contains various options including cre-
dential information for Hackage upload.

A library can also be compiled with runtime profiling information enabled. More on this is discussed
in the section on Concurrency and Profiling.

library-profiling: True

Another common flag to enable is documentation which forces the local build of Haddock docu-
mentation, which can be useful for offline reference. On a Linux filesystem these are built to the
/usr/share/doc/ghc-doc/html/libraries/ directory.

documentation: True

Cabal can also be used to install packages globally to the system PATH. For example the parsec package
to your system from Hackage, the upstream source of Haskell packages, invoke the install command:

$ cabal install parsec --installdir=~/.local/bin # latest version

To download the source for a package, we can use the get command to retrieve the source from
Hackage.

11 BASICS

$ cabal get parsec # fetch source
$ cd parsec-3.1.5

$ cabal configure
$ cabal build
$ cabal install

1.8 Cabal New-Build
The interface for Cabal has seen an overhaul in the last few years and has moved more closely towards
the Nix-style of local builds. Under the new system packages are separated into categories:

• Local Packages - Packages are built from a configuration file which specifies a path to a directory
with a cabal file. These can be working projects as well as all of its local transitive dependencies.

• External Packages - External packages are packages retrieved from either the public Hackage or
a private Hackage repository. These packages are hashed and stored locally in ~/.cabal/store to be
reused across builds.

As of Cabal 3.0 the new-build commands are the default operations for build operations. So if you
type cabal build using Cabal 3.0 you are already using the new-build system.

Historically these commands were separated into two different command namespaces with prefixes v1-
and v2- , with v1 indicating the old sandbox build system and the v2 indicating the new-build system.

The new build commands are listed below:

new-build Compile targets within the project.
new-configure Add extra project configuration
new-repl Open an interactive session for the given component.
new-run Run an executable.
new-test Run test-suites
new-bench Run benchmarks
new-freeze Freeze dependencies.
new-haddock Build Haddock documentation
new-exec Give a command access to the store.
new-update Updates list of known packages.
new-install Install packages.
new-clean Clean the package store and remove temporary files.
new-sdist Generate a source distribution file (.tar.gz).

Cabal also stores all of its build artifacts inside of a dist-newstyle folder stored in the project working
directory. The compilation artifacts are of several categories.

• .hi - Haskell interface modules which describe the type information, public exports, symbol table,
and other module guts of compiled Haskell modules.

• .hie - An extended interface file containing module symbol data.
• .hspp - A Haskell preprocessor file.
• .o - Compiled object files for each module. These are emitted by the native code generator assem-

bler.
• .s - Assembly language source file.
• .bc - Compiled LLVM bytecode file.

BASICS 12

• .ll - An LLVM source file.
• cabal_macros.h - Contains all of the preprocessor definitions that are accessible when using the CPP

extension.
• cache - Contains all artifacts generated by solving the constraints of packages to set up a build

plan. This also contains the hash repository of all external packages.
• packagedb - Database of all of the cabal metadata of all external and local packages needed to build

the project. See Package Databases.

These all get stored under the dist-newstyle folder structure which is set up hierarchically under the
specific CPU architecture, GHC compiler version and finally the package version.

dist-newstyle
��� build
� ��� x86_64-linux
� ��� ghc-8.6.5
� ��� mypackage-0.1.0
� ��� build
� � ��� autogen
� � � ��� cabal_macros.h
� � � ��� Paths_mypackage.hs
� � ��� libHSmypackage-0.1.0-inplace.a
� � ��� libHSmypackage-0.1.0-inplace-ghc8.6.5.so
� � ��� MyPackage
� � � ��� Example.dyn_hi
� � � ��� Example.dyn_o
� � � ��� Example.hi
� � � ��� Example.o
� � ��� MyPackage.dyn_hi
� � ��� MyPackage.dyn_o
� � ��� MyPackage.hi
� � ��� MyPackage.o
� ��� cache
� � ��� build
� � ��� config
� � ��� registration
� ��� package.conf.inplace
� � ��� package.cache
� � ��� package.cache.lock
� ��� setup-config
��� cache
� ��� compiler
� ��� config
� ��� elaborated-plan
� ��� improved-plan
� ��� plan.json
� ��� solver-plan
� ��� source-hashes
� ��� up-to-date
��� packagedb
� ��� ghc-8.6.5
� ��� package.cache
� ��� package.cache.lock
� ��� mypackage-0.1.0-inplace.conf
��� tmp

13 BASICS

1.9 Local Packages
Both Stack and Cabal can handle local packages built from the local filesystem, from remote tarballs, or
from remote Git repositories.

Inside of the stack.yaml simply specify the git repository remote and the hash to pull.

resolver: lts-14.20
packages:
From Git
- git: https://github.com/sdiehl/protolude.git
commit: f5c2bf64b147716472b039d30652846069f2fc70

In Cabal to add a remote create a cabal.project file and add your remote in the source-repository-package
section.

packages: .

source-repository-package
type: git
location: https://github.com/hvr/HsYAML.git
tag: e70cf0c171c9a586b62b3f75d72f1591e4e6aaa1

1.10 Version Bounds
All Haskell packages are versioned and the numerical quantities in the version are supposed to follow the
Package Versioning Policy.

As packages evolve over time there are three numbers which monotonically increase depending on what
has changed in the package.

• Major version number
• Minor version number
• Patch version number

-- PVP summary: +-+------- breaking API changes
-- | | +----- non-breaking API additions
-- | | | +--- code changes with no API change
version: 0.1.0.0

Every library’s cabal file will have a packages dependencies section which will specify the external
packages which the library depends on. It will also contain the allowed versions that it is known to
build against in the build-depends section. The convention is to put the upper bound to the next major
unreleased version and the lower bound at the currently used version.

https://pvp.haskell.org/

BASICS 14

build-depends:
base >= 4.6 && <4.14,
async >= 2.0 && <2.3,
deepseq >= 1.3 && <1.5,
containers >= 0.5 && <0.7,
hashable >= 1.2 && <1.4,
transformers >= 0.2 && <0.6,
text >= 1.2 && <1.3,
bytestring >= 0.10 && <0.11,
mtl >= 2.1 && <2.3

Individual lines in the version specification can be dependent on other variables in the cabal file.

if !impl(ghc >= 8.0)
Build-Depends: fail >= 4.9 && <4.10

Version bounds in cabal files can be managed automatically with a tool cabal-bounds which can
automatically generate, update and format cabal files.

$ cabal-bounds update

See:

• Package Versioning Policy

1.11 Stack
Stack is an alternative approach to Haskell’s package structure that emerged in 2015. Instead of using
a rolling build like Cabal, Stack breaks up sets of packages into release blocks that guarantee internal
compatibility between sets of packages. The package solver for Stack uses a different strategy for resolving
dependencies than cabal-install has historically used and Stack combines this with a centralised build server
called Stackage which continuously tests the set of packages in a resolver to ensure they build against each
other.

Install

To install stack on Linux or Mac, run:

curl -sSL https://get.haskellstack.org/ | sh

For other operating systems, see the official install directions.

https://pvp.haskell.org/
http://docs.haskellstack.org/en/stable/install_and_upgrade/

15 BASICS

Usage

Once stack is installed, it is possible to setup a build environment on top of your existing project’s cabal
file by running:

stack init

An example stack.yaml file for GHC 8.8.1 would look like this:

resolver: lts-14.20
flags: {}
extra-package-dbs: []
packages: []
extra-deps: []

Most of the common libraries used in everyday development are already in the Stackage repository.
The extra-deps field can be used to add Hackage dependencies that are not in the Stackage repository.
They are specified by the package and the version key. For instance, the zenc package could be added to
stack build in the following way:

extra-deps:
- zenc-0.1.1

The stack command can be used to install packages and executables into either the current build
environment or the global environment. For example, the following command installs the executable for
hlint , a popular linting tool for Haskell, and places it in the PATH:

$ stack install hlint

To check the set of dependencies, run:

$ stack ls dependencies

Just as with cabal , the build and debug process can be orchestrated using stack commands:

$ stack build # Build a cabal target
$ stack repl # Launch ghci
$ stack ghc # Invoke the standalone compiler in stack environment
$ stack exec bash # Execute a shell command with the stack GHC environment variables
$ stack build --file-watch # Build on every filesystem change

https://www.stackage.org/
http://hackage.haskell.org/

BASICS 16

To visualize the dependency graph, use the dot command piped first into graphviz, then piped again
into your favorite image viewer:

$ stack dot --external | dot -Tpng | feh -

1.12 Hpack
Hpack is an alternative package description language that uses a structured YAML format to generate
Cabal files. Hpack succeeds in DRYing (Don’t Repeat Yourself) several sections of cabal files that are
often quite repetitive across large projects. Hpack uses a package.yaml file which is consumed by the
command line tool hpack . Hpack can be integrated into Stack and will generate resulting cabal files
whenever stack build is invoked on a project using a package.yaml file. The output cabal file contains a
hash of the input yaml file for consistency checking.

A small package.yaml file might look something like the following:

name : example
version : 0.1.0
synopsis : My fabulous library
description : My fabulous library
maintainer : John Doe
github : john/example
category : Development

ghc-options: -Wall

dependencies:
- base >= 4.9 && < 5
- protolude
- deepseq
- directory
- filepath
- text
- containers
- unordered-containers
- aeson
- pretty-simple

library:
source-dirs: src
exposed-modules:

- Example

executable:
main: Main.hs
source-dirs: exe
dependencies:

- example

tests:

17 BASICS

spec:
main: Test.hs
source-dirs:

- test
- src

dependencies:
- example
- tasty
- tasty-hunit

1.13 Base
GHC itself ships with a variety of core libraries that are loaded into all Haskell projects. The most
foundational of these is base which forms the foundation for all Haskell code. The base library is split
across several modules.

• Prelude - The default namespace imported in every module.
• Data - The simple data structures wired into the language
• Control - Control flow functions
• Foreign - Foreign function interface
• Numeric - Numerical tower and arithmetic operations
• System - System operations for Linux/Mac/Windows
• Text - Basic String types.
• Type - Typelevel operations
• GHC - GHC Internals
• Debug - Debug functions
• Unsafe - Unsafe “backdoor” operations

There have been several large changes to Base over the years which have resulted in breaking changes
that means older versions of base are not compatible with newer versions.

• Monad Applicative Proposal (AMP)
• MonadFail Proposal (MFP)
• Semigroup Monoid Proposal (SMP)

1.14 Prelude
The Prelude is the default standard module. The Prelude is imported by default into all Haskell modules
unless either there is an explicit import statement for it, or the NoImplicitPrelude extension is enabled.

The Prelude exports several hundred symbols that are the default datatypes and functions for libraries
that use the GHC-issued prelude. Although the Prelude is the default import, many libraries these days
do not use the standard prelude instead choosing to roll a custom one on a per-project basis or to use an
off-the shelf prelude from Hackage.

The Prelude contains common datatype and classes such as List, Monad, Maybe and most associated
functions for manipulating these structures. These are the most foundational programming constructs in
Haskell.

1.15 Modern Haskell
There are two official language standards:

• Haskell98

BASICS 18

• Haskell2010

And then there is what is colloquially referred to as Modern Haskell which is not an official language
standard, but an ambiguous term to denote the emerging way most Haskellers program with new versions
of GHC. The language features typically included in modern Haskell are not well-defined and will vary
between programmers. For instance, some programmers prefer to stay quite close to the Haskell2010
standard and only include a few extensions while some go all out and attempt to do full dependent types
in Haskell.

By contrast, the type of programming described by the phrase Modern Haskell typically utilizes some
type-level programming, as well as flexible typeclasses, and a handful of Language Extensions.

1.16 Flags
GHC has a wide variety of flags that can be passed to configure different behavior in the compiler. Enabling
GHC compiler flags grants the user more control in detecting common code errors. The most frequently
used flags are:

Flag Description
-fwarn-tabs Emit warnings of tabs instead of spaces in the source code
-fwarn-unused-imports Warn about libraries imported without being used
-fwarn-name-shadowing Warn on duplicate names in nested bindings
-fwarn-incomplete-uni-patterns Emit warnings for incomplete patterns in lambdas or pattern bindings
-fwarn-incomplete-patterns Warn on non-exhaustive patterns
-fwarn-overlapping-patterns Warn on pattern matching branches that overlap
-fwarn-incomplete-record-updates Warn when records are not instantiated with all fields
-fdefer-type-errors Turn type errors into warnings
-fwarn-missing-signatures Warn about toplevel missing type signatures
-fwarn-monomorphism-restriction Warn when the monomorphism restriction is applied implicitly
-fwarn-orphans Warn on orphan typeclass instances
-fforce-recomp Force recompilation regardless of timestamp
-fno-code Omit code generation, just parse and typecheck
-fobject-code Generate object code

Like most compilers, GHC takes the -Wall flag to enable all warnings. However, a few of the enabled
warnings are highly verbose. For example, -fwarn-unused-do-bind and -fwarn-unused-matches typically
would not correspond to errors or failures.

Any of these flags can be added to the ghc-options section of a project’s .cabal file. For example:

ghc-options:
-fwarn-tabs
-fwarn-unused-imports
-fwarn-missing-signatures
-fwarn-name-shadowing
-fwarn-incomplete-patterns

The flags described above are simply the most useful. See the official reference for the complete set of
GHC’s supported flags.

For information on debugging GHC internals, see the commentary on GHC internals.

19 BASICS

1.17 Hackage
Hackage is the upstream source of open source Haskell packages. With Haskell’s continuing evolution,
Hackage has become many things to developers, but there seem to be two dominant philosophies of
uploaded libraries.

A Repository for Production Libraries
In the first philosophy, libraries exist as reliable, community-supported building blocks for constructing

higher level functionality on top of a common, stable edifice. In development communities where this
method is the dominant philosophy, the authors of libraries have written them as a means of packaging up
their understanding of a problem domain so that others can build on their understanding and expertise.

An Experimental Playground
In contrast to the previous method of packaging, a common philosophy in the Haskell community is

that Hackage is a place to upload experimental libraries as a means of getting community feedback and
making the code publicly available. Library authors often rationalize putting these kinds of libraries up
without documentation, often without indication of what the library actually does or how it works. This
unfortunately means a lot of Hackage namespace has become polluted with dead-end, bit-rotting code.
Sometimes packages are also uploaded purely for internal use within an organisation, or to accompany an
academic paper. These packages are often left undocumented as well.

For developers coming to Haskell from other language ecosystems that favor the former philosophy
(e.g., Python, JavaScript, Ruby), seeing thousands of libraries without the slightest hint of documentation
or description of purpose can be unnerving. It is an open question whether the current cultural state of
Hackage is sustainable in light of these philosophical differences.

Needless to say, there is a lot of very low-quality Haskell code and documentation out there today,
so being conservative in library assessment is a necessary skill. That said, there are also quite a few
phenomenal libraries on Hackage that are highly curated by many people.

As a general rule, if the Haddock documentation for the library does not have a minimal working
example, it is usually safe to assume that it is an RFC-style library and probably should be avoided for
production code.

There are several heuristics you can use to answer the question Should I Use this Hackage Library:

• Check the Uploaded to see if the author has updated it in the last five years.
• Check the Maintainer email address, if the author has an academic email address and has not

uploaded a package in two or more years, it is safe to assume that this is a thesis project and
probably should not be used industrially.

• Check the Modules to see if the author has included toplevel Haddock docstrings. If the author
has not included any documentation then the library is likely of low-quality and should not be used
industrially.

• Check the Dependencies for the bound on base package. If it doesn’t include the latest base
included with the latest version of GHC then the code is likely not actively maintained.

• Check the reverse Hackage search to see if the package is used by other libraries in the ecosystem.
For example: https://packdeps.haskellers.com/reverse/QuickCheck

An example of a bitrotted package:
https://hackage.haskell.org/package/numeric-quest
An example of a well maintained package:
https://hackage.haskell.org/package/QuickCheck

1.18 Stackage
Stackage is an alternative opt-in packaging repository which mirrors a subset of Hackage. Packages that
are included in Stackage are built in a massive continuous integration process that checks to see that given
versions link successfully against each other. This can give a higher degree of assurance that the bounds
of a given resolver ensure compatibility.

Stackage releases are built nightly and there are also long-term stable (LTS) releases. Nightly resolvers
have a date convention while LTS releases have a major and minor version. For example:

http://hackage.haskell.org/

BASICS 20

• lts-14.22
• nightly-2020-01-30

See:

• Stackage
• Stackage FAQ

1.19 GHCi
GHCi is the interactive shell for the GHC compiler. GHCi is where we will spend most of our time in
everyday development. Following is a table of useful GHCi commands.

Command Shortcut Action
:reload :r Code reload
:type :t Type inspection
:kind :k Kind inspection
:info :i Information
:print :p Print the expression
:edit :e Load file in system editor
:load :l Set the active Main module in the REPL
:module :m Add modules to imports
:add :ad Load a file into the REPL namespace
:instances :in Show instances of a typeclass
:browse :bro Browse all available symbols in the REPL namespace

The introspection commands are an essential part of debugging and interacting with Haskell code:

�: :type 3
3 :: Num a => a

�: :kind Either
Either :: * -> * -> *

�: :info Functor
class Functor f where
fmap :: (a -> b) -> f a -> f b
(<$) :: a -> f b -> f a

-- Defined in `GHC.Base'
...

�: :i (:)
data [] a = ... | a : [a] -- Defined in `GHC.Types'
infixr 5 :

https://www.stackage.org/
https://github.com/fpco/lts-haskell#readme

21 BASICS

Querying the current state of the global environment in the shell is also possible. For example, to view
module-level bindings and types in GHCi, run:

�: :browse
�: :show bindings

To examine module-level imports, execute:

�: :show imports
import Prelude -- implicit
import Data.Eq
import Control.Monad

Language extensions can be set at the repl.

:set -XNoImplicitPrelude
:set -XFlexibleContexts
:set -XFlexibleInstances
:set -XOverloadedStrings

To see compiler-level flags and pragmas, use:

�: :set
options currently set: none.
base language is: Haskell2010
with the following modifiers:
-XNoDatatypeContexts
-XNondecreasingIndentation

GHCi-specific dynamic flag settings:
other dynamic, non-language, flag settings:
-fimplicit-import-qualified

warning settings:

�: :showi language
base language is: Haskell2010
with the following modifiers:
-XNoDatatypeContexts
-XNondecreasingIndentation
-XExtendedDefaultRules

Language extensions and compiler pragmas can be set at the prompt. See the Flag Reference for the
vast collection of compiler flag options.

Several commands for the interactive shell have shortcuts:

BASICS 22

Function
+t Show types of evaluated expressions
+s Show timing and memory usage
+m Enable multi-line expression delimited by :{ and :} .

�: :set +t
�: []
[]
it :: [a]

�: :set +s
�: foldr (+) 0 [1..25]
325
it :: Prelude.Integer
(0.02 secs, 4900952 bytes)

�: :set +m
�: :{
�:| let foo = do
�:| putStrLn "hello ghci"
�:| :}
�: foo
"hello ghci"

1.20 .ghci.conf
The GHCi shell can be customized globally by defining a configure file ghci.conf in $HOME/.ghc/ or in the
current working directory as ./.ghci.conf .

For example, we can add a command to use the Hoogle type search from within GHCi. First, install
hoogle :

run one of these command
$ cabal install hoogle
$ stack install hoogle

Then, we can enable the search functionality by adding a command to our ghci.conf :

:set prompt "�: "

:def hlint const . return $ ":! hlint \"src\""
:def hoogle \s -> return $ ":! hoogle --count=15 \"" ++ s ++ "\""

https://www.haskell.org/hoogle/

23 BASICS

�: :hoogle (a -> b) -> f a -> f b
Data.Traversable fmapDefault :: Traversable t => (a -> b) -> t a -> t b
Prelude fmap :: Functor f => (a -> b) -> f a -> f b

It is common community tradition to set the prompt to a colored � :

:set prompt "\ESC[38;5;208m\STX�>\ESC[m\STX "

GHC can also be coerced into giving slightly better error messages:

-- Better errors
:set -ferror-spans -freverse-errors -fprint-expanded-synonyms

GHCi can also use a pretty printing library to format all output, which is often much easier to read.
For example if your project is already using the amazing pretty-simple library simply include the following
line in your ghci configuration.

:set -ignore-package pretty-simple -package pretty-simple
:def! pretty \ _ -> pure ":set -interactive-print Text.Pretty.Simple.pPrint"
:pretty

And the default prelude can also be disabled and swapped for something more sensible:

:seti -XNoImplicitPrelude
:seti -XFlexibleContexts
:seti -XFlexibleInstances
:seti -XOverloadedStrings
import Protolude -- or any other preferred prelude

GHCi Performance

For large projects, GHCi with the default flags can use quite a bit of memory and take a long time to
compile. To speed compilation by keeping artifacts for compiled modules around, we can enable object
code compilation instead of bytecode.

:set -fobject-code

Enabling object code compilation may complicate type inference, since type information provided to
the shell can sometimes be less informative than source-loaded code. This underspecificity can result in
breakage with some language extensions. In that case, you can temporarily reenable bytecode compilation
on a per module basis with the -fbyte-code flag.

BASICS 24

:set -fbyte-code
:load MyModule.hs

If all you need is to typecheck your code in the interactive shell, then disabling code generation entirely
makes reloading code almost instantaneous:

:set -fno-code

1.21 Editor Integration
Haskell has a variety of editor tools that can be used to provide interactive development feedback and
functionality such as querying types of subexpressions, linting, type checking, and code completion. These
are largely provided by the haskell-ide-engine which serves as an editor agnostic backend that interfaces
with GHC and Cabal to query code.

Vim

• haskell-ide-engine
• haskell-vim
• vim-ormolu

Emacs

• haskell-mode
• haskell-ide-engine
• ormolu.el

VSCode

• haskell-ide-engine - Tab completion plugin
• language-haskell - Syntax highlighting plugin
• ghcid - Interactive error reporting plugin
• hie-server - Jump to definition and tag handling plugin
• hlint - Linting and style-checking plugin
• ghcide - Interactive completion plugin
• ormolu-vscode - Code formatting plugin

1.22 Linux Packages
There are several upstream packages for Linux packages which are released by GHC development. The
key ones of note for Linux are:

• Debian Packages
• Debian PPA

For scripts and operations tools, it is common to include commands to add the following apt reposito-
ries, and then use these to install the signed GHC and cabal-install binaries (if using Cabal as the primary
build system).

https://github.com/haskell/haskell-ide-engine
https://github.com/haskell/haskell-ide-engine#using-hie-with-vim-or-neovim
https://github.com/neovimhaskell/haskell-vim
https://github.com/sdiehl/vim-ormolu
https://github.com/haskell/haskell-mode
https://github.com/haskell/haskell-ide-engine#using-hie-with-emacs
https://github.com/vyorkin/ormolu.el
https://github.com/haskell/haskell-ide-engine#using-hie-with-vs-code
https://marketplace.visualstudio.com/items?itemName=justusadam.language-haskell
https://marketplace.visualstudio.com/items?itemName=ndmitchell.haskell-ghcid
https://marketplace.visualstudio.com/items?itemName=alanz.vscode-hie-server
https://marketplace.visualstudio.com/items?itemName=hoovercj.haskell-linter
https://marketplace.visualstudio.com/items?itemName=DigitalAssetHoldingsLLC.ghcide
https://marketplace.visualstudio.com/items?itemName=sjurmillidahl.ormolu-vscode
https://downloads.haskell.org/~debian/
https://launchpad.net/~hvr/+archive/ubuntu/ghc

25 BASICS

$ sudo add-apt-repository -y ppa:hvr/ghc
$ sudo apt-get update
$ sudo apt-get install -y cabal-install-3.0 ghc-8.8.1

It is not advisable to use a Linux system package manager to manage Haskell dependencies. Although
this can be done, in practice it is better to use Cabal or Stack to create locally isolated builds to avoid
incompatibilities.

1.23 Names
Names in Haskell exist within a specific namespace. Names are either unqualified of the form:

nub

Or qualified by the module where they come from, such as:

Data.List.nub

The major namespaces are described below with their naming conventions

Namespace Convention
Modules Uppercase
Functions Lowercase
Variables Lowercase
Type Variables Lowercase
Datatypes Uppercase
Constructors Uppercase
Typeclasses Uppercase
Synonyms Uppercase
Type Families Uppercase

1.24 Modules
A module consists of a set of imports and exports and when compiled generates an interface which is
linked against other Haskell modules. A module may reexport symbols from other modules.

-- A module starts with its export declarations of symbols declared in this file.
module MyModule (myExport1, myExport2) where

-- Followed by a set of imports of symbols from other files
import OtherModule (myImport1, myImport2)

-- Rest of the logic and definitions in the module follow
-- ...

BASICS 26

Modules’ dependency graphs optionally may be cyclic (i.e. they import symbols from each other)
through the use of a boot file, but this is often best avoided if at all possible.

Various module import strategies exist. For instance, we may:
Import all symbols into the local namespace.

import Data.List

Import select symbols into the local namespace:

import Data.List (nub, sort)

Import into the global namespace masking a symbol:

import Data.List hiding (nub)

Import symbols qualified under Data.Map namespace into the local namespace.

import qualified Data.Map

Import symbols qualified and reassigned to a custom namespace (M , in the example below):

import qualified Data.Map as M

You may also dump multiple modules into the same namespace so long as the symbols do not clash:

import qualified Data.Map as M
import qualified Data.Map.Strict as M

A main module is a special module which reserves the name Main and has a mandatory export of
type IO () which is invoked when the executable is run.. This is the entry point from the system into a
Haskell program.

module Main where
main = print "Hello World!"

27 BASICS

1.25 Functions
Functions are the central construction in Haskell. A function f of two arguments x and y can be
defined in a single line as the left-hand and right-hand side of an equation:

f x y = x + y

This line defines a function named f of two arguments, which on the right-hand side adds and yields
the result. Central to the idea of functional programming is that computational functions should behave
like mathematical functions. For instance, consider this mathematical definition of the above Haskell
function, which, aside from the parentheses, looks the same:

f(x, y) = x + y

In Haskell, a function of two arguments need not necessarily be applied to two arguments. The result
of applying only the first argument is to yield another function to which later the second argument can be
applied. For example, we can define an add function and subsequently a single-argument inc function,
by merely pre-applying 1 to add :

add x y = x + y
inc = add 1

�: inc 4
5

In addition to named functions Haskell also has anonymous lambda functions denoted with a backslash.
For example the identity function:

id x = x

Is identical to:

id = \x -> x

Functions may call themselves or other functions as arguments; a feature known as higher-order func-
tions. For example the following function applies a given argument f , which is itself a function, to a
value x twice.

applyTwice f x = f (f x)

BASICS 28

1.26 Types
Typed functional programming is essential to the modern Haskell paradigm. But what are types precisely?

The syntax of a programming language is described by the constructs that define its types, and its
semantics are described by the interactions among those constructs. A type system overlays additional
structure on top of the syntax that imposes constraints on the formation of expressions based on the
context in which they occur.

Dynamic programming languages associate types with values at evaluation, whereas statically typed
languages associate types to expressions before evaluation. Dynamic languages are in a sense as statically
typed as static languages, however they have a degenerate type system with only one type.

The dominant philosophy in functional programming is to “make invalid states unrepresentable” at
compile-time, rather than performing massive amounts of runtime checks. To this end Haskell has devel-
oped a rich type system that is based on typed lambda calculus known as Girard’s System-F (See Rank-N
Types) and has incrementally added extensions to support more type-level programming over the years.

The following ground types are quite common:

• () - The unit type
• Char - A single unicode character (“code point”)
• Text - Unicode strings
• Bool - Boolean values
• Int - Machine integers
• Integer - GMP arbitrary precision integers
• Float - Machine floating point values
• Double - Machine double floating point values

Parameterised types consist of a type and several type parameters indicated as lower case type variables.
These are associated with common data structures such as lists and tuples.

• [a] – Homogeneous lists with elements of type a
• (a,b) – Tuple with two elements of types a and b

• (a,b,c) – Tuple with three elements of types a , b , and c

The type system grows quite a bit from here, but these are the foundational types you’ll first encounter.
See the later chapters for all types off advanced features that can be optionally turned on.

This tutorial will only cover a small amount of the theory of type systems. For a more thorough
treatment of the subject there are two canonical texts:

• Pierce, B. C., & Benjamin, C. (2002). Types and Programming Languages. MIT Press.
• Harper, R. (2016). Practical Foundations for Programming Languages. Cambridge Univer-

sity Press.

1.27 Type Signatures
A toplevel Haskell function consists of two lines. The value-level definition which is a function name,
followed by its arguments on the left-hand side of the equals sign, and then the function body which
computes the value it yields on the right-hand side:

myFunction x y = x ^ 2 + y ^ 2
-- ^ ^ ^ ^^^^^^^^^^^^^
-- | | | |
-- | | | +-- function body
-- | | +------ second argument
-- | +-------- first argument
-- +-------------- function

29 BASICS

The type-level definition is the function name followed by the type of its arguments separated by
arrows, and the final term is the type of the entire function body, meaning the type of value yielded by
the function itself.

myFunction :: Int -> Int -> Int
-- ^ ^ ^ ^^^^^
-- | | | |
-- | | | +- return type
-- | | +------ second argument
-- | +------------ first argument
-- +----------------------- function

Here is a simple example of a function which adds two integers.

add :: Integer -> Integer -> Integer
add x y = x + y

Functions are also capable of invoking other functions inside of their function bodies:

inc :: Integer -> Integer
inc = add 1

The simplest function, called the identity function, is a function which takes a single value and simply
returns it back. This is an example of a polymorphic function since it can handle values of any type. The
identity function works just as well over strings as over integers.

id :: a -> a
id x = x

This can alternatively be written in terms of an anonymous lambda function which is a backslash
followed by a space-separated list of arguments, followed by a function body.

id :: a -> a
id = \x -> x

One of the big ideas in functional programming is that functions are themselves first class values which
can be passed to other functions as arguments themselves. For example the applyTwice function takes an
argument f which is of type (a -> a) and it applies that function over a given value x twice and yields
the result. applyTwice is a higher-order function which will transform one function into another function.

applyTwice :: (a -> a) -> a -> a
applyTwice f x = f (f x)

BASICS 30

Often to the left of a type signature you will see a big arrow => which denotes a set of constraints
over the type signature. Each of these constraints will be in uppercase and will normally mention at least
one of the type variables on the right hand side of the arrow. These constraints can mean many things
but in the simplest form they denote that a type variable must have an implementation of a type class.
The add function below operates over any two similar values x and y , but these values must have a
numerical interface for adding them together.

add :: (Num a) => a -> a -> a
add x y = x + y

Type signatures can also appear at the value level in the form of explicit type signatures which are
denoted in parentheses.

add1 :: Int -> Int
add1 x = x + (1 :: Int)

These are sometimes needed to provide additional hints to the typechecker when specific terms are
ambiguous to the typechecker, or when additional language extensions have been enabled which don’t
have precise inference methods for deducing all type variables.

1.28 Currying
In other languages functions normally have an arity which prescribes the number of arguments a function
can take. Some languages have fixed arity (like Fortran) others have flexible arity (like Python) where a
variable of number of arguments can be passed. Haskell follows a very simple rule: all functions in Haskell
take a single argument. For multi-argument functions (some of which we’ve already seen), arguments will
be individually applied until the function is saturated and the function body is evaluated.

For example, the add function from above can be partially applied to produce an add1 function:

add :: Int -> Int -> Int
add x y = x + y

add1 :: Int -> Int
add1 = add 1

Uncurrying is the process of taking a function which takes two arguments and transforming it into a
function which takes a tuple of arguments. The Haskell prelude includes both a curry and an uncurry
function for transforming functions into those that take multiple arguments from those that take a tuple
of arguments and vice versa:

curry :: ((a, b) -> c) -> a -> b -> c
uncurry :: (a -> b -> c) -> (a, b) -> c

For example, uncurry applied to the add function creates a function that takes a tuple of integers:

31 BASICS

uncurryAdd :: (Int, Int) -> Int
uncurryAdd = uncurry add

example :: Int
example = uncurryAdd (1,2)

1.29 Algebraic Datatypes
Custom datatypes in Haskell are defined with the data keyword followed by the the type name, its
parameters, and then a set of constructors. The possible constructors are either sum types or of product
types. All datatypes in Haskell can be expressed as sums of products. A sum type is a set of options that
is delimited by a pipe.

A datatype can only ever be inhabited by a single value from a sum type and intuitively models a set
of “options” a value may take. While a product type is a combination of a set of typed values, potentially
named by record fields. For example the following are two definitions of a Point product type, the latter
with two fields x and y .

data Point = Point Int Int
data Point = Point { x :: Int, y :: Int }

As another example: A deck of common playing cards could be modeled by the following set of product
and sum types:

data Suit = Clubs | Diamonds | Hearts | Spades
data Color = Red | Black
data Value
= Two
| Three
| Four
| Five
| Six
| Seven
| Eight
| Nine
| Ten
| Jack
| Queen
| King
| Ace
deriving (Eq, Ord)

A record type can use these custom datatypes to define all the parameters that define an individual
playing card.

BASICS 32

data Card = Card
{ suit :: Suit
, color :: Color
, value :: Value
}

Some example values:

queenDiamonds :: Card
queenDiamonds = Card Diamonds Red Queen

-- Alternatively
queenDiamonds :: Card
queenDiamonds = Card { suit = Diamonds, color = Red, value = Queen }

The problem with the definition of this datatype is that it admits several values which are malformed.
For instance it is possible to instantiate a Card with a suit Hearts but with color Black which is an invalid
value. The convention for preventing these kind of values in Haskell is to limit the export of constructors
in a module and only provide a limited set of functions which the module exports, which can enforce these
constraints. These are smart constructors and an extremely common pattern in Haskell library design.
For example we can export functions for building up specific suit cards that enforce the color invariant.

module Cards (Card, diamond, spade, heart, club) where

diamond :: Value -> Card
diamond = Card Diamonds Red

spade :: Value -> Card
spade = Card Spades Black

heart :: Value -> Card
heart = Card Hearts Red

club :: Value -> Card
club = Card Clubs Black

Datatypes may also be recursive, in the sense that they can contain themselves as fields. The most
common example is a linked list which can be defined recursively as either an empty list or a value linked
to a potentially nested version of itself.

data List a = Nil | List a (List a)

An example value would look like:

33 BASICS

list :: List Integer
list = List 1 (List 2 (List 3 Nil))

Constructors for datatypes can also be defined as infix symbols. This is somewhat rare, but is sometimes
used in more math heavy libraries. For example the constructor for our list type could be defined as the
infix operator :+: . When the value is printed using a Show instance, the operator will be printed in infix
form.

data List a = Nil | a :+: (List a)

1.30 Lists
Linked lists or cons lists are a fundamental data structure in functional programming. GHC has builtin
syntactic sugar in the form of list syntax which allows us to write lists that expand into explicit invocations
of the cons operator (:) . The operator is right associative and an example is shown below:

[1,2,3] = 1 : 2 : 3 : []
[1,2,3] = 1 : (2 : (3 : [])) -- with explicit parens

This syntax also extends to the typelevel where lists are represented as brackets around the type of
values they contain.

myList1 :: [Int]
myList1 = [1,2,3]

myList2 :: [Bool]
myList2 = [True, True, False]

The cons operator itself has the type signature which takes a head element as its first argument and a
tail argument as its second.

(:) :: a -> [a] -> [a]

The Data.List module from the standard Prelude defines a variety of utility functions for operations
over linked lists. For example the length function returns the integral length of the number of elements
in the linked list.

length :: [a] -> Int

BASICS 34

While the take function extracts a fixed number of elements from the list.

take :: Int -> [a] -> [a]

Both of these functions are pure and return a new list without modifying the underlying list passed as
an argument.

Another function iterate is an example of a function which returns an infinite list. It takes as its first
argument a function and then repeatedly applies that function to produce a new element of the linked
list.

iterate :: (a -> a) -> a -> [a]

Consuming these infinite lists can be used as a control flow construct to construct loops. For example
instead of writing an explicit loop, as we would in other programming languages, we instead construct a
function which generates list elements. For example producing a list which produces subsequent powers
of two:

powersOfTwo = iterate (2*) 1

We can then use the take function to evaluate this lazy stream to a desired depth.

�: take 15 powersOfTwo
[1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384]

An equivalent loop in an imperative language would look like the following.

def powersOfTwo(n):
square_list = [1]
for i in range(1,n+1):

square_list.append(2 ** i)
return square_list

print(powersOfTwo(15))

1.31 Pattern Matching
To unpack an algebraic datatype and extract its fields we’ll use a built in language construction known as
pattern matching. This is denoted by the case syntax and scrutinizes a specific value. A case expression
will then be followed by a sequence of matches which consist of a pattern on the left and an arbitrary
expression on the right. The left patterns will all consist of constructors for the type of the scrutinized
value and should enumerate all possible constructors. For product type patterns that are scrutinized a

35 BASICS

sequence of variables will bind the fields associated with its positional location in the constructor. The
types of all expressions on the right hand side of the matches must be identical.

Pattern matches can be written in explicit case statements or in toplevel functional declarations. The
latter simply expands the former in the desugaring phase of the compiler.

data Example = Example Int Int Int

example1 :: Example -> Int
example1 x = case x of
Example a b c -> a + b + c

example2 :: Example -> Int
example2 (Example a b c) = a + b +c

Following on the playing card example in the previous section, we could use a pattern to produce a
function which scores the face value of a playing card.

value :: Value -> Integer
value card = case card of
Two -> 2
Three -> 3
Four -> 4
Five -> 5
Six -> 6
Seven -> 7
Eight -> 8
Nine -> 9
Ten -> 10
Jack -> 10
Queen -> 10
King -> 10
Ace -> 1

And we can use a double pattern match to produce a function which determines which suit trumps
another suit. For example we can introduce an order of suits of cards where the ranking of cards proceeds
(Clubs, Diamonds, Hearts, Spaces). A _ underscore used inside a pattern indicates a wildcard pattern
and matches against any constructor given. This should be the last pattern used a in match list.

suitBeats :: Suit -> Suit -> Bool
suitBeats Clubs Diamonds = True
suitBeats Clubs Hearts = True
suitBeats Clubs Spaces = True
suitBeats Diamonds Hearts = True
suitBeats Diamonds Spades = True
suitBeats Hearts Spades = True
suitBeats _ _ = False

BASICS 36

And finally we can write a function which determines if another card beats another card in terms of
the two pattern matching functions above. The following pattern match brings the values of the record
into the scope of the function body assigning to names specified in the pattern syntax.

beats :: Card -> Card -> Bool
beats (Card suit1 color1 value1) (Card suit2 color2 value2) =
(suitBeats suit1 suit2) && (value1 > value2)

Functions may also invoke themselves. This is known as recursion. This is quite common in pattern
matching definitions which recursively tear down or build up data structures. This kind of pattern is one
of the defining modes of programming functionally.

The following two recursive pattern matches are desugared forms of each other:

fib :: Integer -> Integer
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

fib :: Integer -> Integer
fib m = case m of
0 -> 0
1 -> 1
n -> fib (n-1) + fib(n-2)

Pattern matching on lists is also an extremely common pattern. It has special pattern syntax and the
tail variable is typically pluralized. In the following x denotes the head variable and xs denotes the tail.
For example the following function traverses a list of integers and adds (+1) to each value.

addOne :: [Int] -> [Int]
addOne (x : xs) = (x+1) : (addOne xs)
addOne [] = []

1.32 Guards
Guard statements are expressions that evaluate to boolean values that can be used to restrict pattern
matches. These occur in a pattern match statements at the toplevel with the pipe syntax on the left
indicating the guard condition. The special otherwise condition is just a renaming of the boolean value
True exported from Prelude.

absolute :: Int -> Int
absolute n
| n < 0 = (-n)
| otherwise = n

37 BASICS

Guards can also occur in pattern case expressions.

absoluteJust :: Maybe Int -> Maybe Int
absoluteJust n = case n of
Nothing -> Nothing
Just n
| n < 0 -> Just (-n)
| otherwise -> Just n

1.33 Operators and Sections
An operator is a function that can be applied using infix syntax or partially applied using a section.
Operators can be defined to use any combination of the special ASCII symbols or any unicode symbol.

! # % & * + . / < = > ? @ \ ^ | - ~ :
The following are reserved syntax and cannot be overloaded:
.. : :: = \ | <- -> @ ~ =>

Operators are of one of three fixity classes.

• Infix - Place between expressions
• Prefix - Placed before expressions
• Postfix - Placed after expressions. See Postfix Operators.

Expressions involving infix operators are disambiguated by the operator’s fixity and precedence. Infix
operators are either left or right associative. Associativity determines how operators of the same precedence
are grouped in the absence of parentheses.

a + b + c + d = ((a + b) + c) + d -- left associative
a + b + c + d = a + (b + (c + d)) -- right associative

Precedence and associativity are denoted by fixity declarations for the operator using either infixr
infixl and infix . The standard operators defined in the Prelude have the following precedence table.

infixr 9 .
infixr 8 ^, ^^, **
infixl 7 *, /, `quot`, `rem`, `div`, `mod`
infixl 6 +, -
infixr 5 ++
infix 4 ==, /=, <, <=, >=, >
infixr 3 &&
infixr 2 ||
infixr 1 >>, >>=
infixr 0 $, `seq`

Sections are written as (op e) or (e op) . For example:

BASICS 38

(+1) 3
(1+) 3

Operators written within enclosed parens are applied like traditional functions. For example the
following are equivalent:

(+) x y = x + y

1.34 Tuples
Tuples are heterogeneous structures which contain a fixed number of values. Some simple examples are
shown below:

-- 2-tuple
tuple2 :: (Integer, String)
tuple2 = (1, "foo")

-- 3-tuple
tuple3 :: (Integer, Integer, Integer)
tuple3 = (10, 20, 30)

For two-tuples there are two functions fst and snd which extract the left and right values respectively.

fst :: (a,b) -> a
snd :: (a,b) -> b

GHC supports tuples to size 62.

1.35 Where & Let Clauses
Haskell syntax contains two different types of declaration syntax: let and where . A let binding is an
expression and binds anywhere in its body. For example the following let binding declares x and y in
the expression x+y .

f = let x = 1; y = 2 in (x+y)

A where binding is a toplevel syntax construct (i.e. not an expression) that binds variables at the end
of a function. For example the following binds x and y in the function body of f which is x+y .

39 BASICS

f = x+y where x=1; y=1

Where clauses following the Haskell layout rule where definitions can be listed on newlines so long as
the definitions have greater indentation than the first toplevel definition they are bound to.

f = x+y
where
x = 1
y = 1

1.36 Conditionals
Haskell has builtin syntax for scrutinizing boolean expressions. These are first class expressions known as
if statements. An if statement is of the form if cond then trueCond else falseCond . Both the True and
False statements must be present.

absolute :: Int -> Int
absolute n =
if (n < 0)
then (-n)
else n

If statements are just syntactic sugar for case expressions over boolean values. The following example
is equivalent to the above example.

absolute :: Int -> Int
absolute n = case (n < 0) of
True -> (-n)
False -> n

1.37 Function Composition
Functions are obviously at the heart of functional programming. In mathematics function composition is
an operation which takes two functions and produces another function with the result of the first argument
function applied to the result of the second function. This is written in mathematical notation as:

g ◦ f

The two functions operate over a domain. For example X, Y and Z.

f : X → Y g : Y → Z

Or in Haskell notation:

BASICS 40

f :: X -> Y
g :: Y -> Z

Composition operation results in a new function:

g ◦ f : X → Z

In Haskell this operator is given special infix operator to appear similar to the mathematical notation.
Intuitively it takes two functions of types b -> c and a -> b and composes them together to produce a
new function. This is the canonical example of a higher-order function.

(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \x -> f (g x)

Haskell code will liberally use this operator to compose chains of functions. For example the following
composes a chain of list processing functions sort , filter and map :

example :: [Integer] -> [Integer]
example =

sort
. filter (<100)
. map (*10)

Another common higher-order function is the flip function which takes as its first argument a function
of two arguments, and reverses the order of these two arguments returning a new function.

flip :: (a -> b -> c) -> b -> a -> c

The most common operator in all of Haskell is the function application operator $. This function is
right associative and takes the entire expression on the right hand side of the operator and applies it to a
function on the left.

infixr 0 $
($) :: (a -> b) -> a -> b

This is quite often used in the pattern where the left hand side is a composition of other functions
applied to a single argument. This is common in point-free style of programming which attempts to
minimize the number of input arguments in favour of pure higher order function composition. The flipped
form of this function does the opposite and is left associative, and applies the entire left hand side expression
to a function given in the second argument to the function.

41 BASICS

infixl 1 &
(&) :: a -> (a -> b) -> b

For comparison consider the use of $, & and explicit parentheses.

ex1 = f1 . f2 . f3 . f4 $ input -- with ($)
ex1 = input & f1 . f2 . f3 . f4 -- with (&)
ex1 = (f1 . f2 . f3 . f4) input -- with explicit parens

The on function takes a function b and yields the result of applying unary function u to two
arguments x and y . This is a higher order function that transforms two inputs and combines the
outputs.

on :: (b -> b -> c) -> (a -> b) -> a -> a -> c

This is used quite often in sort functions. For example we can write a custom sort function which sorts
a list of lists based on length.

�: import Data.List
�: sortSize = sortBy (compare `on` length)
�: sortSize [[1,2], [1,2,3], [1]]
[[1],[1,2],[1,2,3]]

1.38 List Comprehensions
List comprehensions are a syntactic construct that first originated in the Haskell language and has now
spread to other programming languages. List comprehensions provide a simple way of working with lists
and sequences of values that follow patterns. List comprehension syntax consists of three components:

• Generators - Expressions which evaluate a list of values which are iteratively added to the result.
• Let bindings - Expressions which generate a constant value which is scoped on each iteration.
• Guards - Expressions which generate a boolean expression which determine whether an iteration

is added to the result.

The simplest generator is simply a list itself. The following example produces a list of integral values,
each element multiplied by two.

�: [2*x | x <- [1,2,3,4,5]]
-- ^^^^^^^^^^^^^^^^
-- Generator
[2,4,6,8,10]

BASICS 42

We can extend this by adding a let statement which generalizes the multiplier on each step and binds
it to a variable n .

�: [n*x | x <- [1,2,3,4,5], let n = 3]
-- ^^^^^^^^^
-- Let binding
[3,6,9,12,15]

And we can also restrict the set of resulting values to only the subset of values of x that meet a
condition. In this case we restrict to only values of x which are odd.

�: [n*x | x <- [1,2,3,4,5], let n = 3, odd x]
-- ^^^^^
-- Guard
[3,9,15]

Comprehensions with multiple generators will combine each generator pairwise to produce the cartesian
product of all results.

�: [(x,y) | x <- [1,2,3], y <- [10,20,30]]
[(1,10),(1,20),(1,30),(2,10),(2,20),(2,30),(3,10),(3,20),(3,30)]

�: [(x,y,z) | x <- [1,2], y <- [10,20], z <- [100,200]]
[(1,10,100),(1,10,200),(1,20,100),(1,20,200),(2,10,100),(2,10,200),(2,20,100),(2,20,200)]

Haskell has builtin comprehension syntax which is syntactic sugar for specific methods of the Enum
typeclass.

Syntax Sugar Enum Class Method
[e1..] enumFrom e1
[e1,e2..] enumFromThen e1 e2
[e1..e3] enumFromTo e1 e3
[e1,e2..e3] enumFromThenTo e1 e2 e3

There is an Enum instance for Integer and Char types and so we can write list comprehensions for
both, which generate ranges of values.

�: [1 .. 15]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

�: ['a' .. 'z']
"abcdefghijklmnopqrstuvwxyz"

�: [1,3 .. 15]

43 BASICS

[1,3,5,7,9,11,13,15]

�: [0,50..500]
[0,50,100,150,200,250,300,350,400,450,500]

These comprehensions can be used inside of function definitions and reference locally bound variables.
For example the factorial function (written as n!) is defined as the product of all positive integers up to
a given value.

factorial :: Integer -> Integer
factorial n = product [1..n]

As a more complex example consider a naive prime number sieve:

primes :: [Integer]
primes = sieve [2..]
where
sieve (p:xs) = p : sieve [n | n <- xs, n `mod` p > 0]

And a more complex example, consider the classic FizzBuzz interview question. This makes use of
iteration and guard statements.

fizzbuzz :: [String]
fizzbuzz = [fb x| x <- [1..100]]

where fb y
| y `mod` 15 == 0 = "FizzBuzz"
| y `mod` 3 == 0 = "Fizz"
| y `mod` 5 == 0 = "Buzz"
| otherwise = show y

1.39 Comments
Single line comments begin with double dashes -- :

-- Everything should be built top-down, except the first time.

Multiline comments begin with {- and end with -} .

BASICS 44

{-
The goal of computation is the emulation of our synthetic abilities, not the
understanding of our analytic ones.
-}

Comments may also add additional structure in the form of Haddock docstrings. These comments will
begin with a pipe.

{-|
Great ambition without contribution is without significance.

-}

Modules may also have a comment convention which describes the individual authors, copyright and
stability information in the following form:

{-|
Module : MyEnterpriseModule
Description : Make it so.
Copyright : (c) Jean Luc Picard
License : MIT
Maintainer : jl@enterprise.com
Stability : experimental
Portability : POSIX

Description of module structure in Haddock markup style.
-}

1.40 Typeclasses
Typeclasses are one of the core abstractions in Haskell. Just as we wrote polymorphic functions above
which operate over all given types (the id function is one example), we can use typeclasses to provide a
form of bounded polymorphism which constrains type variables to a subset of those types that implement
a given class.

For example we can define an equality class which allows us to define an overloaded notion of equality
depending on the data structure provided.

class Equal a where
equal :: a -> a -> Bool

Then we can define this typeclass over several different types. These definitions are called typeclass
instances. For example for the Bool type the equality typeclass would be defined as:

45 BASICS

instance Equal Bool where
equal True True = True
equal False False = True
equal True False = False
equal False True = False

Over the unit type, where only a single value exists, the instance is trivial:

instance Equal () where
equal () () = True

For the Ordering type, defined as:

data Ordering = LT | EQ | GT

We would have the following Equal instance:

instance Equal Ordering where
equal LT LT = True
equal EQ EQ = True
equal GT GT = True
equal _ _ = False

An Equal instance for a more complex data structure like the list type relies upon the fact that the
type of the elements in the list must also have a notion of equality, so we include this as a constraint in
the typeclass context, which is written to the left of the fat arrow => . With this constraint in place, we
can write this instance recursively by pattern matching on the list elements and checking for equality all
the way down the spine of the list:

instance (Equal a) => Equal [a] where
equal [] [] = True -- Empty lists are equal
equal [] ys = False -- Lists of unequal size are not equal
equal xs [] = False
-- equal x y is only allowed here due to the constraint (Equal a)
equal (x:xs) (y:ys) = equal x y && equal xs ys

In the above definition, we know that we can check for equality between individual list elements if
those list elements satisfy the Equal constraint. Knowing that they do, we can then check for equality
between two complete lists.

For tuples, we will also include the Equal constraint for their elements, and we can then check each
element for equality respectively. Note that this instance includes two constraints in the context of the
typeclass, requiring that both type variables a and b must also have an Equal instance.

BASICS 46

instance (Equal a, Equal b) => Equal (a,b) where
equal (x0, x1) (y0, y1) = equal x0 y0 && equal x1 y1

The default prelude comes with a variety of typeclasses that are used frequently and defined over many
prelude types:

• Num - Provides a basic numerical interface for values with addition, multiplication, subtraction,
and negation.

• Eq - Provides an interface for values that can be tested for equality.
• Ord - Provides an interface for values that have a total ordering.
• Read - Provides an interface for values that can be read from a string.
• Show - Provides an interface for values that can be printed to a string.
• Enum - Provides an interface for values that are enumerable to integers.
• Semigroup - Provides an algebraic semigroup interface.
• Functor - Provides an algebraic functor interface. See Functors.
• Monad - Provides an algebraic monad interface. See Monads.
• Category - Provides an algebraic category interface. See Categories.
• Bounded - Provides an interface for enumerable values with bounds.
• Integral - Provides an interface for integral-like quantities.
• Real - Provides an interface for real-like quantities.
• Fractional - Provides an interface for rational-like quantities.
• Floating - Provides an interface for defining transcendental functions over real values.
• RealFrac - Provides an interface for rounding real values.
• RealFloat - Provides an interface for working with IEE754 operations.

To see the implementation for any of these typeclasses you can run the GHCi info command to see the
methods and all instances in scope. For example:

�: :info Num
class (Eq a, Show a) => Num a where

(+) :: a -> a -> a
(*) :: a -> a -> a
(-) :: a -> a -> a
negate :: a -> a
abs :: a -> a
signum :: a -> a
fromInteger :: Integer -> a

-- Imported from GHC.Num
instance Num Float -- Imported from GHC.Float
instance Num Double -- Imported from GHC.Float
instance Num Integer -- Imported from GHC.Num
instance Num Int -- Imported from GHC.Num

Many of the default classes have instances that can be derived automatically. After the definition of a
datatype you can add a deriving clause which will generate the instances for this datatype automatically.
This does not work universally but for many instances which have boilerplate definitions, GHC is quite
clever and can save you from writing quite a bit of code by hand.

For example for a custom list type.

47 BASICS

data List a
= Cons a (List a)
| Nil
deriving (Eq, Ord, Show)

1.41 Side Effects
Contrary to a common misconception, side effects are an integral part of Haskell programming. Probably
the most interesting thing about Haskell’s approach to side effects is that they are encoded in the type
system. This is certainly a different approach to effectful programming, and the language has various
models for modeling these effects within the type system. These models range from using Monads to
building algebraic models of effects that draw clear lines between effectful code and pure code. The idea
of reasoning about where effects can and cannot exist is one of the key ideas of Haskell, but this certainly
does not mean trying to avoid side effects altogether!

Indeed, a Hello World program in Haskell is quite simple:

main :: IO ()
main = print "Hello World"

Other side effects can include reading from the terminal and prompting the user for input, such as in
the complete program below:

main :: IO ()
main = do
print "Enter a number"
n <- getLine
print ("You entered: " ++ n)

1.42 Records
Records in Haskell are fundamentally broken for several reasons:

1. The syntax is unconventional.

Most programming languages use dot or arrow syntax for field accessors like the following:

person.name
person->name

Haskell however uses function application syntax since record accessors are simply just functions.
Instead or creating a privileged class of names and syntax for field accessors, Haskell instead choose to
implement the simplest model and expands accessors to function during compilation.

BASICS 48

name person
person {name="foo"}

2. Incomplete pattern matches are implicitly generated for sums of products.

data Example = Ex1 { a :: Int } | Ex2 { b :: Int }

The functions generated for a or b in both of these cases are partial. See Exhaustiveness checking.

3. Lack of Namespacing

Given two records defined in the same module (or imported) GHC is unable to (by default) disam-
biguate which field accessor to assign at a callsite that uses a .

data Example1 = Ex1 { a :: Int }
data Example2 = Ex2 { a :: Int }

This can be routed around with the language extension DisambiguateRecordFields but only to a certain
extent. If we want to write maximally polymorphic functions which operate over arbitrary records which
have a field a , then the GHC typesystem is not able to express this without some much higher-level
magic.

1.43 Pragmas
At the beginning of a module there is special syntax for pragmas which direct the compiler to compile
the current module in a specific way. The most common is a language extension pragma denoted like the
following:

{-# LANGUAGE FlexibleInstances #-}

These flags alter the semantics and syntax of the module in a variety of ways. See Language Extensions
for more details on all of these options.

Additionally we can pass specific GHC flags which alter the compilation behavior, enabling or disabling
specific bespoke features based on our needs. These include compiler warnings, optimisation flags and
extension flags.

{-# OPTIONS_GHC -fwarn-incomplete-patterns #-}

Warning flags allow you to inform users at compile-time with a custom error message. Additionally
you can mark a module as deprecated with a specific replacement message.

49 BASICS

module Widget {-# DEPRECATED "This module is deprecated." #-}
module Widget {-# WARNING "This module is dangerous." #-}

1.44 Newtypes
Newtypes are a form of zero-cost abstraction that allows developers to specify compile-time names for
types for which the developer wishes to expose a more restrictive interface. They’re zero-cost because these
newtypes end up with the same underlying representation as the things they differentiate. This allows
the compiler to distinguish between different types which are representationally identical but semantically
different.

For instance velocity can be represented as a scalar quantity represented as a double but the user may
not want to mix doubles with other vector quantities. Newtypes allow us to distinguish between scalars
and vectors at compile time so that no accidental calculations can occur.

newtype Velocity = Velocity Double

Most importantly these newtypes disappear during compilation and the velocity type will be repre-
sented as simply just a machine double with no overhead.

See also the section on Newtype Deriving for a further discussion of tricks involved with handling
newtypes.

1.45 Bottoms
The bottom is a singular value that inhabits every type. When this value is evaluated, the semantics of
Haskell no longer yield a meaningful value. In other words, further operations on the value cannot be
defined in Haskell. A bottom value is usually written as the symbol �, (i.e. the compiler flipping you off
). Several ways exist to express bottoms in Haskell code.

For instance, undefined is an easily called example of a bottom value. This function has type a
but lacks any type constraints in its type signature. Thus, undefined is able to stand in for any type
in a function body, allowing type checking to succeed, even if the function is incomplete or lacking a
definition entirely. The undefined function is extremely practical for debugging or to accommodate writing
incomplete programs.

undefined :: a

mean :: Num a => Vector a -> a
mean nums = (total / count) where -- Partially defined function

total = undefined
count = undefined

addThreeNums :: Num a => a -> a -> a -> a
addThreeNums n m j = undefined -- No function body declared at all

f :: a -> Complicated Type
f = undefined -- Write tomorrow, typecheck today!

https://en.wikipedia.org/wiki/Up_tack

BASICS 50

-- Arbitrarily complicated types
-- welcome!

Another example of a bottom value comes from the evaluation of the error function, which takes a
String and returns something that can be of any type. This property is quite similar to undefined , which

also can also stand in for any type.
Calling error in a function causes the compiler to throw an exception, halt the program, and print

the specified error message.

error :: String -> a -- Takes an error message of type
-- String and returns whatever type
-- is needed

In the divByY function below, passing the function 0 as the divisor results in this function returning
such an exception.

-- Annotated code that features use of the error function.

divByY:: (Num a, Eq a, Fractional a) => a -> a -> a
divByY _ 0 = error "Divide by zero error" -- Dividing by 0 causes an error
divByY dividend divisor = dividend / divisor -- Handles defined division

A third type way to express a bottom is with an infinitely looping term:

f :: a
f = let x = x in x

Examples of actual Haskell code that use this looping syntax lives in the source code of the GHC.Prim
module. These bottoms exist because the operations cannot be defined in native Haskell. Such operations
are baked into the compiler at a very low level. However, this module exists so that Haddock can generate
documentation for these primitive operations, while the looping syntax serves as a placeholder for the
actual implementation of the primops.

Perhaps the most common introduction to bottoms is writing a partial function that does not have ex-
haustive pattern matching defined. For example, the following code has non-exhaustive pattern matching
because the case expression, lacks a definition of what to do with a B :

data F = A | B

case x of
A -> ()

The code snippet above is translated into the following GHC Core output where the compiler will
insert an exception to account for the non-exhaustive patterns:

https://hackage.haskell.org/package/ghc-prim-0.4.0.0/docs/GHC-Prim.html
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/glasgow_exts.html#unboxed-types-and-primitive-operations

51 BASICS

case x of _ {
A -> ();
B -> patError "<interactive>:3:11-31|case"

}

GHC can be made more vocal about incomplete patterns using the -fwarn-incomplete-patterns and
-fwarn-incomplete-uni-patterns flags.

A similar situation can arise with records. Although constructing a record with missing fields is rarely
useful, it is still possible.

data Foo = Foo { example1 :: Int }
f = Foo {} -- Record defined with a missing field

When the developer omits a field’s definition, the compiler inserts an exception in the GHC Core
representation:

Foo (recConError "<interactive>:4:9-12|a")

Fortunately, GHC will warn us by default about missing record fields.
Bottoms are used extensively throughout the Prelude, although this fact may not be immediately

apparent. The reasons for including bottoms are either practical or historical.
The canonical example is the head function which has type [a] -> a . This function could not be

well-typed without the bottom.

-- | Extract the first element of a list, which must be non-empty.
head :: [a] -> a
head (x:_) = x
head [] = error "Prelude.head: empty list"

Some further examples of bottoms:

import GHC.Err
import Prelude hiding (head, (!!), undefined)

-- degenerate functions

undefined :: a
undefined = error "Prelude.undefined"

head :: [a] -> a
head (x:_) = x
head [] = error "Prelude.head: empty list"

BASICS 52

(!!) :: [a] -> Int -> a
xs !! n | n < 0 = error "Prelude.!!: negative index"
[] !! _ = error "Prelude.!!: index too large"
(x:_) !! 0 = x
(_:xs) !! n = xs !! (n-1)

It is rare to see these partial functions thrown around carelessly in production code because they cause
the program to halt. The preferred method for handling exceptions is to combine the use of safe variants
provided in Data.Maybe with the functions maybe and either .

Another method is to use pattern matching, as shown in listToMaybe , a safer version of head described
below:

listToMaybe :: [a] -> Maybe a
listToMaybe [] = Nothing -- An empty list returns Nothing
listToMaybe (a:_) = Just a -- A non-empty list returns the first element

-- wrapped in the Just context.

Invoking a bottom defined in terms of error typically will not generate any position information. How-
ever, assert , which is used to provide assertions, can be short-circuited to generate position information
in place of either undefined or error calls.

import GHC.Base

foo :: a
foo = undefined
-- *** Exception: Prelude.undefined

bar :: a
bar = assert False undefined
-- *** Exception: src/fail.hs:8:7-12: Assertion failed

See: Avoiding Partial Functions

1.46 Exhaustiveness
Pattern matching in Haskell allows for the possibility of non-exhaustive patterns. For example, passing
Nothing to unsafe will cause the program to crash at runtime. However, this function is an otherwise
valid, type-checked program.

unsafe :: Num a => Maybe a -> Maybe a
unsafe (Just x) = Just $ x + 1

Since unsafe takes a Maybe a value as its argument, two possible values are valid input: Nothing and
Just a . Since the case of a Nothing was not defined in unsafe , we say that the pattern matching within

https://wiki.haskell.org/Avoiding_partial_functions

53 BASICS

that function is non-exhaustive. In other words, the function does not implement appropriate handling of
all valid inputs. Instead of yielding a value, such a function will halt from an incomplete match.

Partial functions from non-exhaustivity are a controversial subject, and frequent use of non-exhaustive
patterns is considered a dangerous code smell. However, the complete removal of non-exhaustive patterns
from the language would itself be too restrictive and forbid too many valid programs.

Several flags exist that we can pass to the compiler to warn us about such patterns or forbid them
entirely, either locally or globally.

$ ghc -c -Wall -Werror A.hs
A.hs:3:1:

Warning: Pattern match(es) are non-exhaustive
In an equation for `unsafe': Patterns not matched: Nothing

The -Wall or -fwarn-incomplete-patterns flag can also be added on a per-module basis by using the
OPTIONS_GHC pragma.

{-# OPTIONS_GHC -Wall #-}
{-# OPTIONS_GHC -fwarn-incomplete-patterns #-}

A more subtle case of non-exhaustivity is the use of implicit pattern matching with a single uni-pattern
in a lambda expression. In a manner similar to the unsafe function above, a uni-pattern cannot handle
all types of valid input. For instance, the function boom will fail when given a Nothing, even though the
type of the lambda expression’s argument is a Maybe a .

boom = \(Just a) -> something

Non-exhaustivity arising from uni-patterns in lambda expressions occurs frequently in let or do -
blocks after desugaring, because such code is translated into lambda expressions similar to boom .

boom2 = let
Just a = something

boom3 = do
Just a <- something

GHC can warn about these cases of non-exhaustivity with the -fwarn-incomplete-uni-patterns flag.
Generally speaking, any non-trivial program will use some measure of partial functions. It is simply

a fact. Thus, there exist obligations for the programmer that cannot be manifested in the Haskell type
system.

1.47 Debugger
Since GHC version 6.8.1, a built-in debugger has been available, although its use is somewhat rare.
Debugging uncaught exceptions is in a similar style to debugging segfaults with gdb. Breakpoints can be
set with :break and the call stack stepped through with :forward and :back .

https://downloads.haskell.org/ghc/latest/docs/html/users_guide/glasgow_exts.html#rewrite-rules

BASICS 54

�: :set -fbreak-on-exception -- Sets option for evaluation to stop on exception
�: :break 2 15 -- Sets a break point at line 2, column 15
�: :trace main -- Run a function to generate a sequence of evaluation steps
�: :hist -- Step back from a breakpoint through previous evaluation steps
�: :back -- Step backwards a single step at a time through the history
�: :forward -- Step forward a single step at a time through the history

1.48 Stack Traces
With runtime profiling enabled, GHC can also print a stack trace when a diverging bottom term (error,
undefined) is hit. This action, though, requires a special flag and profiling to be enabled, both of which
are disabled by default. So, for example:

import Control.Exception

f x = g x

g x = error (show x)

main = try (evaluate (f ())) :: IO (Either SomeException ())

$ ghc -O0 -rtsopts=all -prof -auto-all --make stacktrace.hs
./stacktrace +RTS -xc

And indeed, the runtime tells us that the exception occurred in the function g and enumerates the
call stack.

*** Exception (reporting due to +RTS -xc): (THUNK_2_0), stack trace:
Main.g,
called from Main.f,
called from Main.main,
called from Main.CAF
--> evaluated by: Main.main,
called from Main.CAF

It is best to run this code without optimizations applied -O0 so as to preserve the original call stack as
represented in the source. With optimizations applied, GHC will rearrange the program in rather drastic
ways, resulting in what may be an entirely different call stack.

1.49 Printf Tracing
Since Haskell is a pure language it has the unique property that most code is introspectable on its own.
As such, using printf to display the state of the program at critical times throughout execution is often

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/profiling.html
https://www.haskell.org/ghc/

55 BASICS

unnecessary because we can simply open GHCi and test the function. Nevertheless, Haskell does come
with an unsafe trace function which can be used to perform arbitrary print statements outside of the IO
monad. You can place these statements wherever you like in your code without without IO restrictions.

import Debug.Trace

example1 :: Int
example1 = trace "impure print" 1

example2 :: Int
example2 = traceShow "tracing" 2

example3 :: [Int]
example3 = [trace "will not be called" 3]

main :: IO ()
main = do
print example1
print example2
print $ length example3

-- impure print
-- 1
-- "tracing"
-- 2
-- 1

Trace uses unsafePerformIO under the hood and should not be used in production code.
In addition to the trace function, several monadic trace variants are quite common.

import Text.Printf
import Debug.Trace

traceM :: (Monad m) => String -> m ()
traceM string = trace string $ return ()

traceShowM :: (Show a, Monad m) => a -> m ()
traceShowM = traceM . show

tracePrintfM :: (Monad m, PrintfArg a) => String -> a -> m ()
tracePrintfM s = traceM . printf s

1.50 Type Inference
While inference in Haskell is usually complete, there are cases where the principal type cannot be inferred.
Three common cases are:

• Reduced polymorphism due to mutually recursive binding groups
• Undecidability due to polymorphic recursion
• Reduced polymorphism due to the monomorphism restriction

BASICS 56

In each of these cases, Haskell needs a hint from the programmer, which may be provided by adding
explicit type signatures.

Mutually Recursive Binding Groups

f x = const x g
g y = f 'A'

In this case, the inferred type signatures are correct in their usage, but they don’t represent the most
general signatures. When GHC analyzes the module it analyzes the dependencies of expressions on each
other, groups them together, and applies substitutions from unification across mutually defined groups.
As such the inferred types may not be the most general types possible, and an explicit signature may be
desired.

-- Inferred types
f :: Char -> Char
g :: t -> Char

-- Most general types
f :: a -> a
g :: a -> Char

Polymorphic recursion

data Tree a = Leaf | Bin a (Tree (a, a))

size Leaf = 0
size (Bin _ t) = 1 + 2 * size t

In the second case, recursion is polymorphic because the inferred type variable a in size spans two
possible types (a and (a,a)). These two types won’t pass the occurs-check of the typechecker and it
yields an incorrect inferred type:

Occurs check: cannot construct the infinite type: t0 = (t0, t0)
Expected type: Tree t0

Actual type: Tree (t0, t0)
In the first argument of `size', namely `t'
In the second argument of `(*)', namely `size t'
In the second argument of `(+)', namely `2 * size t'

Simply adding an explicit type signature corrects this. Type inference using polymorphic recursion is
undecidable in the general case.

57 BASICS

size :: Tree a -> Int
size Leaf = 0
size (Bin _ t) = 1 + 2 * size t

See: Static Semantics of Function and Pattern Bindings

Monomorphism Restriction

Finally Monomorphism restriction is a builtin typing rule. By default, it is turned on when compiling
and off in GHCi. The practical effect of this rule is that types inferred for functions without explicit type
signatures may be more specific than expected. This is because GHC will sometimes reduce a general
type, such as Num to a default type, such as Double . This can be seen in the following example in GHCi:

�: :set +t

�: 3
3
it :: Num a => a

�: default (Double)

�: 3
3.0
it :: Num a => a

This rule may be deactivated with the NoMonomorphicRestriction extension, see below.
See:

• Monomorphism Restriction

1.51 Type Holes
Since the release of GHC 7.8, type holes allow underscores as stand-ins for actual values. They may be
used either in declarations or in type signatures.

Type holes are useful in debugging incomplete programs. By placing an underscore on any value on
the right hand-side of a declaration, GHC will throw an error during type-checking. The error message
describes which values may legally fill the type hole.

head' = head _

typedhole.hs:3:14: error:
• Found hole: _ :: [a]

Where: ‘a’ is a rigid type variable bound by
the inferred type of head' :: a at typedhole.hs:3:1

• In the first argument of ‘head’, namely ‘_’

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-880004.5
https://wiki.haskell.org/Monomorphism_restriction
https://www.haskell.org/ghc/

BASICS 58

In the expression: head _
In an equation for ‘head'’: head' = head _

• Relevant bindings include head' :: a (bound at typedhole.hs:3:1)

GHC has rightly suggested that the expression needed to finish the program is xs :: [a] .
The same hole technique can be applied at the toplevel for signatures:

const' :: _
const' x y = x

typedhole.hs:5:11: error:
• Found type wildcard ‘_’ standing for ‘t -> t1 -> t’

Where: ‘t1’ is a rigid type variable bound by
the inferred type of const' :: t -> t1 -> t at typedhole.hs:6:1

‘t’ is a rigid type variable bound by
the inferred type of const' :: t -> t1 -> t at typedhole.hs:6:1

To use the inferred type, enable PartialTypeSignatures
• In the type signature:

const' :: _
• Relevant bindings include

const' :: t -> t1 -> t (bound at typedhole.hs:6:1)

Pattern wildcards can also be given explicit names so that GHC will use the names when reporting
the inferred type in the resulting message.

foo :: _a -> _a
foo _ = False

typedhole.hs:9:9: error:
• Couldn't match expected type ‘_a’ with actual type ‘Bool’

‘_a’ is a rigid type variable bound by
the type signature for:
foo :: forall _a. _a -> _a

at typedhole.hs:8:8
• In the expression: False

In an equation for ‘foo’: foo _ = False
• Relevant bindings include

foo :: _a -> _a (bound at typedhole.hs:9:1)

The same wildcards can be used in type contexts to dump out inferred type class constraints:

59 BASICS

succ' :: _ => a -> a
succ' x = x + 1

typedhole.hs:11:10: error:
Found constraint wildcard ‘_’ standing for ‘Num a’
To use the inferred type, enable PartialTypeSignatures
In the type signature:

succ' :: _ => a -> a

When the flag -XPartialTypeSignatures is passed to GHC and the inferred type is unambiguous, GHC
will let us leave the holes in place and the compilation will proceed with a warning instead of an error.

typedhole.hs:3:10: Warning:
Found hole ‘_’ with type: w_
Where: ‘w_’ is a rigid type variable bound by

the inferred type of succ' :: w_ -> w_1 -> w_ at foo.hs:4:1
In the type signature for ‘succ'’: _ -> _ -> _

1.52 Deferred Type Errors
Since the release of version 7.8, GHC supports the option of treating type errors as runtime errors. With
this option enabled, programs will run, but they will fail when a mistyped expression is evaluated. This
feature is enabled with the -fdefer-type-errors flag in three ways: at the module level, when compiled
from the command line, or inside of a GHCi interactive session.

For instance, the program below will compile:

{-# OPTIONS_GHC -fdefer-type-errors #-} -- Enable deferred type
-- errors at module level

x :: ()
x = print 3

y :: Char
y = 0

z :: Int
z = 0 + "foo"

main :: IO ()
main = do
print x

However, when a pathological term is evaluated at runtime, we’ll see a message like this:

https://www.haskell.org/ghc/

BASICS 60

defer: defer.hs:4:5:
Couldn't match expected type ‘()’ with actual type ‘IO ()’
In the expression: print 3
In an equation for ‘x’: x = print 3

(deferred type error)

This error tells us that while x has a declared type of () , the body of the function print 3 has a
type of IO () . However, if the term is never evaluated, GHC will not throw an exception.

1.53 Name Conventions
Haskell uses short variable names as a convention. This is offputting at first but after you read enough
Haskell, it ceases to be a problem. In addition there are several ad-hoc conventions that are typically
adopted

Variable Convention
a,b,c.. Type level variable
x,y,z.. Value variables
f,g,h.. Higher order function values
x,y List head values
xs,ys List tail values
m Monadic type variable
t Monad transformer variable
e Exception value
s Monad state value
r Monad reader value
t Foldable or Traversable type variable
f Functor or applicative type variable
mX Maybe variable

Functions that end with a tick (like fold') are typically strict variants of a default lazy function.

foldl' :: (b -> a -> b) -> b -> t a -> b

Functions that end with a _ (like map_) are typically variants of a function which discards the output
and returns void.

mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()

Variables that are pluralized xs , ys typically refer to list tails.

(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys

61 BASICS

Records that do not export their accessors will sometimes prefix them with underscores. These are
sometimes interpreted by Template Haskell logic to produce derived field accessors.

data Point = Point
{ _x :: Int
, _y :: Int
}

Predicates will often prefix their function names with is , as in isPositive .

isPositive = (>0)

Functions which result in an Applicative or Monad type will often suffix their name with a A for
Applicative or M for Monad. For example:

liftM :: Monad m => (a -> r) -> m a -> m r
liftA :: Applicative f => (a -> b) -> f a -> f b

Functions which have chirality in which they traverse a data structure (i.e. left-to-right or right-to-left)
will often suffix the name with L or R for their iteration pattern. This is useful because often times these
type signatures are identical.

mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)

Functions working with mutable structures or monadic state will often adopt the following naming
conventions:

newX -- Create a new mutable X structure
writeX -- Write to an existing mutable X structure
setX -- Set the value of an existing mutable X structure
modifyX -- Apply a function over existing mutable X structure

Functions that are prefixed with with typically take a value as their first argument and a function as
their second argument returning the value with the function applied over some substructure as the result.

withBool :: String -> (Bool -> Parser a) -> Value -> Parser a

BASICS 62

1.54 ghcid
ghcid is a lightweight IDE hook that allows continuous feedback whenever code is updated. It can be
run from the command line in the root of the cabal project directory by specifying a command to run
(e.g. ghci , cabal repl , or stack repl).

ghcid --command="cabal repl" # Run cabal repl under ghcid
ghcid --command="stack repl" # Run stack repl under ghcid
ghcid --command="ghci baz.hs" # Open baz.hs under ghcid

When a Haskell module is loaded into ghcid , the code is evaluated in order to provide the user with
any errors or warnings that would happen at compile time. When the developer edits and saves code
loaded into ghcid , the program automatically reloads and evaluates the code for errors and warnings.

1.55 HLint
HLint is a source linter for Haskell that provides a variety of hints on code improvements. It can be
customised and configured with custom rules, on a per-project basis. HLint is configured through a
hlint.yaml file placed in the root of a project. To generate the default configuration run:

hlint --default > .hlint.yaml

Custom errors can be added to this file in order to match and suggest custom changes of code from
the left hand side match to the right hand side replacement:

error: {lhs: "foo x", rhs: bar x}

HLint’s default is to warn on all possible failures. These can be disabled globally by adding ignore
pragmas.

ignore: {name: Use let}

Or within specific modules by specifying the within option.

ignore: {name: Use let, within: MyModule}

See:

• HLint Github

https://github.com/ndmitchell/ghcid
https://github.com/ndmitchell/hlint

63 BASICS

1.56 Docker Images
Haskell has stable Docker images that are widely used for deployments across Kubernetes and Docker
environments. The two Dockerhub repositories of note are:

• Official Haskell Images
• Stack LTS Images

To import the official Haskell images with ghc and cabal-install include the following preamble in
your Dockerfile with your desired GHC version.

FROM haskell:8.8.1

To import the stack images include the following preamble in your Dockerfile with your desired Stack
resolver replaced.

FROM fpco/stack-build:lts-14.0

1.57 Continuous Integration
These days it is quite common to use cloud hosted continuous integration systems to test code from version
control systems. There are many community contributed build scripts for different service providers,
including the following:

• Travis CI for Cabal
• Travis CI for Stack
• Circle CI for Cabal & Stack
• Github Actions for Cabal & Stack

See also the official CI repository:

• haskell-ci

1.58 Ormolu
Ormolu is an opinionated Haskell source formatter that produces a canonical way of rendering the Haskell
abstract syntax tree to text. This ensures that code shared amongst teams and checked into version
control conforms to a single universal standard for whitespace and lexeme placing. This is similar to tools
in other languages such as go fmt .

For example running ormolu example.hs --inplace on the following module:

module Unformatted
(a,b)

where

a :: Int
a = 42

b :: Int
b = a+ a

Will rerender the file as:

https://hub.docker.com/_/haskell/
https://hub.docker.com/r/fpco/haskell/
https://github.com/haskell-CI/haskell-ci/blob/master/.travis.yml
https://docs.haskellstack.org/en/stable/travis_ci/
https://github.com/composewell/packcheck/blob/master/.circleci/config.yml
https://gist.github.com/mstksg/11f753d891cee5980326a8ea8c865233
https://github.com/haskell-CI/haskell-ci

BASICS 64

module Unformatted
(a,

b,
)

where

a :: Int
a = 42

b :: Int
b = a + a

Ormolu can be installed via a variety of mechanisms.

$ stack install ormolu --resolver=lts-14.14 # via stack
$ cabal new-install ormolu --installdir=/home/user/.local/bin # via cabal
$ nix-build -A ormolu # via nix

See:

• ormolu

1.59 Haddock
Haddock is the automatic documentation generation tool for Haskell source code, and it integrates with
the usual cabal toolchain. In this section, we will explore how to document code so that Haddock can
generate documentation successfully.

Several frequent comment patterns are used to document code for Haddock. The first of these methods
uses -- | to delineate the beginning of a comment:

-- | Documentation for f
f :: a -> a
f = ...

Multiline comments are also possible:

-- | Multiline documentation for the function
-- f with multiple arguments.
fmap :: Functor f

=> (a -> b) -- ^ function
-> f a -- ^ input
-> f b -- ^ output

-- ^ is used to comment Constructors or Record fields:

https://github.com/tweag/ormolu
https://www.haskell.org/haddock/#Overview

65 BASICS

data T a b
= A a -- ^ Documentation for A
| B b -- ^ Documentation for B

data R a b = R
{ f1 :: a -- ^ Documentation for the field f1
, f2 :: b -- ^ Documentation for the field f2
}

Elements within a module (i.e. values, types, classes) can be hyperlinked by enclosing the identifier in
single quotes:

data T a b
= A a -- ^ Documentation for 'A'
| B b -- ^ Documentation for 'B'

Modules themselves can be referenced by enclosing them in double quotes:

-- | Here we use the "Data.Text" library and import
-- the 'Data.Text.pack' function.

haddock also allows the user to include blocks of code within the generated documentation. Two
methods of demarcating the code blocks exist in haddock . For example, enclosing a code snippet in @
symbols marks it as a code block:

-- | An example of a code block.
--
-- @
-- f x = f (f x)
-- @

Similarly, it is possible to use bird tracks (>) in a comment line to set off a code block.

-- | A similar code block example that uses bird tracks (i.e. '>')
-- > f x = f (f x)

Snippets of interactive shell sessions can also be included in haddock documentation. In order to denote
the beginning of code intended to be run in a REPL, the >>> symbol is used:

BASICS 66

-- | Example of an interactive shell session embedded within documentation
--
-- >>> factorial 5
-- 120

Headers for specific blocks can be added by prefacing the comment in the module block with a * :

module Foo (
-- * My Header
example1,
example2

)

Sections can also be delineated by $ blocks that pertain to references in the body of the module:

module Foo (
-- $section1
example1,
example2

)

-- $section1
-- Here is the documentation section that describes the symbols
-- 'example1' and 'example2'.

Links can be added with the following syntax:

<url text>

Images can also be included, so long as the path is either absolute or relative to the directory in which
haddock is run.

<<diagram.png title>>

haddock options can also be specified with pragmas in the source, either at the module or project level.

{-# OPTIONS_HADDOCK show-extensions, ignore-exports #-}

67 BASICS

Option Description
ignore-exports Ignores the export list and includes all signatures in scope.
not-home Module will not be considered in the root documentation.
show-extensions Annotates the documentation with the language extensions used.
hide Forces the module to be hidden from Haddock.
prune Omits definitions with no annotations.

1.60 Unsafe Functions
As everyone eventually finds out there are several functions within the implementation of GHC (not the
Haskell language) that can be used to subvert the type-system; these functions are marked with the prefix
unsafe . Unsafe functions exist only for when one can manually prove the soundness of an expression but

can’t express this property in the type-system, or externalities to Haskell.

unsafeCoerce :: a -> b -- Unsafely coerce anything into anything
unsafePerformIO :: IO a -> a -- Unsafely run IO action outside of IO

Using these functions to subvert the Haskell typesystem will cause all measure of undefined behavior
with unimaginable pain and suffering, and so they are strongly discouraged. When initially starting out
with Haskell there are no legitimate reasons to use these functions at all.

BASICS 68

Chapter 2

Monads

Monads form one of the core components for constructing Haskell programs. In their most general form
monads are an algebraic building block that can give rise to ways of structuring control flow, handling data
structures and orchestrating logic. Monads are a very general algebraic way of structuring code and have
a certain reputation for being confusing. However their power and flexibility have become foundational
to the way modern Haskell programs are structured.

There is a singular truth to keep in mind when learning monads.

A monad is just its algebraic laws. Nothing more, nothing less.

2.1 Eightfold Path to Monad Satori
Much ink has been spilled waxing lyrical about the supposed mystique of monads. Instead, I suggest a
path to enlightenment:

1. Don’t read the monad tutorials.
2. No really, don’t read the monad tutorials.
3. Learn about the Haskell typesystem.
4. Learn what a typeclass is.
5. Read the Typeclassopedia.
6. Read the monad definitions.
7. Use monads in real code.
8. Don’t write monad-analogy tutorials.

In other words, the only path to understanding monads is to read the fine source, fire up GHC, and
write some code. Analogies and metaphors will not lead to understanding.

2.2 Monad Myths
The following are all false:

• Monads are impure.
• Monads are about effects.
• Monads are about state.
• Monads are about imperative sequencing.
• Monads are about IO.
• Monads are dependent on laziness.
• Monads are a “back-door” in the language to perform side-effects.
• Monads are an embedded imperative language inside Haskell.
• Monads require knowing abstract mathematics.
• Monads are unique to Haskell.

69

http://wiki.haskell.org/Typeclassopedia

MONADS 70

2.3 Monad Methods
Monads are not complicated. They are implemented as a typeclass with two methods, return and (>>=)
(pronounced “bind”). In order to implement a Monad instance, these two functions must be defined:

class Monad m where
return :: a -> m a -- N.B. 'm' refers to a type constructor

-- (e.g., Maybe, Either, etc.) that
-- implements the Monad typeclass

(>>=) :: m a -> (a -> m b) -> m b

The first type signature in the Monad class definition is for return . Any preconceptions one might
have for the word “return” should be discarded. It has an entirely different meaning in the context of
Haskell and acts very differently than in languages such as C, Python, or Java. Instead of being the final
arbiter of what value a function produces, return in Haskell injects a value of type a into a monadic
context (e.g., Maybe, Either, etc.), which is denoted as m a .

The other function essential to implementing a Monad instance is (>>=) . This infix function takes
two arguments. On its left side is a value with type m a , while on the right side is a function with type
(a -> m b) . The bind operation results in a final value of type m b .

A third, auxiliary function ((>>)) is defined in terms of the bind operation that discards its argument.

(>>) :: Monad m => m a -> m b -> m b
m >> k = m >>= _ -> k

This definition says that (») has a left and right argument which are monadic with types m a and
m b respectively, while the infix function yields a value of type m b . The actual implementation of (»)

says that when m is passed to (>>) with k on the right, the value k will always be yielded.

2.4 Monad Laws
In addition to specific implementations of (>>=) and return , all monad instances must satisfy three laws.

Law 1
The first law says that when return a is passed through (>>=) into a function f , this expression is

exactly equivalent to f a .

return a >>= f � f a -- N.B. 'a' refers to a value, not a type

In discussing the next two laws, we’ll refer to a value m . This notation is shorthand for a value
wrapped in a monadic context. Such a value has type m a , and could be represented more concretely by
values like Nothing , Just x , or Right x . It is important to note that some of these concrete instantiations
of the value m have multiple components. In discussing the second and third monad laws, we’ll see some
examples of how this plays out.

Law 2
The second law states that a monadic value m passed through (>>=) into return is exactly equivalent

to itself. In other words, using bind to pass a monadic value to return does not change the initial value.

71 MONADS

m >>= return � m -- 'm' here refers to a value that has type 'm a'

A more explicit way to write the second Monad law exists. In this following example code, the first
expression shows how the second law applies to values represented by non-nullary type constructors. The
second snippet shows how a value represented by a nullary type constructor works within the context of
the second law.

(SomeMonad val) >>= return � SomeMonad val -- 'SomeMonad val' has type 'm a' just
-- like 'm' from the first example of the
-- second law

NullaryMonadType >>= return � NullaryMonadType

Law 3
While the first two laws are relatively clear, the third law may be more difficult to understand. This

law states that when a monadic value m is passed through (>>=) to the function f and then the result
of that expression is passed to >>= g , the entire expression is exactly equivalent to passing m to a lambda
expression that takes one parameter x and outputs the function f applied to x . By the definition of
bind, f x must return a value wrapped in the same monad. Because of this property, the resultant value
of that expression can be passed through (>>=) to the function g , which also returns a monadic value.

(m >>= f) >>= g � m >>= (\x -> f x >>= g) -- Like in the last law, 'm' has
-- has type 'm a'. The functions 'f'
-- and 'g' have types '(a -> m b)'
-- and '(b -> m c)' respectively

Again, it is possible to write this law with more explicit code. Like in the explicit examples for law 2,
m has been replaced by SomeMonad val in order to be make it clear that there can be multiple components

to a monadic value. Although little has changed in the code, it is easier to see that value –namely, val –
corresponds to the x in the lambda expression. After SomeMonad val is passed through (>>=) to f , the
function f operates on val and returns a result still wrapped in the SomeMonad type constructor. We can
call this new value SomeMonad newVal . Since it is still wrapped in the monadic context, SomeMonad newVal
can thus be passed through the bind operation into the function g .

((SomeMonad val) >>= f) >>= g � (SomeMonad val) >>= (\x -> f x >>= g)

Monad law summary: Law 1 and 2 are identity laws (left and right identity respectively) and law 3 is
the associativity law. Together they ensure that Monads can be composed and ‘do the right thing’.

See:

• Monad Laws

https://wiki.haskell.org/Constructor#Type_constructor
http://wiki.haskell.org/Monad_laws

MONADS 72

2.5 Do Notation
Monadic syntax in Haskell is written in a sugared form, known as do notation. The advantages of this
special syntax are that it is easier to write and often easier to read, and it is entirely equivalent to simply
applying the monad operations. The desugaring is defined recursively by the rules:

do { a <- f ; m } � f >>= \a -> do { m } -- bind 'f' to a, proceed to desugar
-- 'm'

do { f ; m } � f >> do { m } -- evaluate 'f', then proceed to
-- desugar m

do { m } � m

Thus, through the application of the desugaring rules, the following expressions are equivalent:

do
a <- f -- f, g, and h are bound to the names a,
b <- g -- b, and c. These names are then passed
c <- h -- to 'return' to ensure that all values
return (a, b, c) -- are wrapped in the appropriate monadic

-- context

do { -- N.B. '{}' and ';' characters are
a <- f; -- rarely used in do-notation
b <- g;
c <- h;
return (a, b, c)
}

f >>= \a ->
g >>= \b ->

h >>= \c ->
return (a, b, c)

If one were to write the bind operator as an uncurried function (which is not how Haskell uses it) the
same desugaring might look something like the following chain of nested binds with lambdas.

bindMonad(f, lambda a:
bindMonad(g, lambda b:

bindMonad(h, lambda c:
returnMonad (a,b,c))))

In the do-notation, the monad laws from above are equivalently written:
Law 1

73 MONADS

do y <- return x
f y

= do f x

Law 2

do x <- m
return x

= do m

Law 3

do b <- do a <- m
f a

g b

= do a <- m
b <- f a
g b

= do a <- m
do b <- f a

g b

See:

• Haskell 2010: Do Expressions

2.6 Maybe Monad
The Maybe monad is the simplest first example of a monad instance. The Maybe monad models a
computation which may fail to yield a value at any point during computation.

The Maybe type has two value constructors. The first, Just , is a unary constructor representing a
successful computation, while the second, Nothing , is a nullary constructor that represents failure.

data Maybe a = Nothing | Just a

The monad instance describes the implementation of (>>=) for Maybe by pattern matching on the
possible inputs that could be passed to the bind operation (i.e., Nothing or Just x). The instance
declaration also provides an implementation of return , which in this case is simply Just .

http://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-470003.14

MONADS 74

instance Monad Maybe where
(Just x) >>= k = k x -- 'k' is a function with type (a -> Maybe b)
Nothing >>= k = Nothing

return = Just -- Just's type signature is (a -> Maybe a), in
-- other words, extremely similar to the
-- type of 'return' in the typeclass
-- declaration above.

The following code shows some simple operations to do within the Maybe monad.

(Just 3) >>= (\x -> return (x + 1))
-- Just 4

In the above example, the value Just 3 is passed via (>>=) to the lambda function \x -> return (x + 1) .
x refers to the Int portion of Just 3 , and we can use x in the second half of the lambda expression,
return (x + 1) which evaluates to Just 4 , indicating a successful computation.

In the second example, the value Nothing is passed via (>>=) to the same lambda function as in the
previous example. However, according to the Maybe Monad instance, whenever Nothing is bound to a
function, the expression’s result will be Nothing .

Nothing >>= (\x -> return (x + 1))
-- Nothing

Here, return is applied to 4 and results in Just 4 .

return 4 :: Maybe Int
-- Just 4

The next code examples show the use of do notation within the Maybe monad to do addition that
might fail. Desugared examples are provided as well.

example1 :: Maybe Int
example1 = do
a <- Just 3 -- Bind 3 to name a
b <- Just 4 -- Bind 4 to name b
return $ a + b -- Evaluate (a + b), then use 'return' to ensure

-- the result is in the Maybe monad in order to
-- satisfy the type signature
-- Just 7

desugared1 :: Maybe Int

75 MONADS

desugared1 = Just 3 >>= \a -> -- This example is the desugared
Just 4 >>= \b -> -- equivalent to example1
return $ a + b

-- Just 7

example2 :: Maybe Int
example2 = do
a <- Just 3 -- Bind 3 to name a
b <- Nothing -- Bind Nothing to name b
return $ a + b

-- Nothing

-- This result might be somewhat surprising, since
-- addition within the Maybe monad can actually
-- return 'Nothing'. This result occurs because one
-- of the values, Nothing, indicates computational
-- failure. Since the computation failed at one
-- step within the process, the whole computation
-- fails, leaving us with 'Nothing' as the final
-- result.

desugared2 :: Maybe Int
desugared2 = Just 3 >>= \a -> -- This example is the desugared
Nothing >>= \b -> -- equivalent to example2
return $ a + b

-- Nothing

2.7 List Monad
The List monad is the second simplest example of a monad instance. As always, this monad implements
both (>>=) and return .

instance Monad [] where
m >>= f = concat (map f m) -- 'm' is a list
return x = [x]

The definition of bind says that when the list m is bound to a function f , the result is a concatenation
of map f over the list m . The return method simply takes a single value x and injects into a singleton
list [x] .

In order to demonstrate the List monad’s methods, we will define two values: m and f . m is a
simple list, while f is a function that takes a single Int and returns a two element list [1, 0] .

m :: [Int]
m = [1,2,3,4]

MONADS 76

f :: Int -> [Int]
f = \x -> [1,0] -- 'f' always returns [1, 0]

When applied to bind, evaluation proceeds as follows:

m >>= f
==> [1,2,3,4] >>= \x -> [1,0]
==> concat (map (\x -> [1,0]) [1,2,3,4])
==> concat ([[1,0],[1,0],[1,0],[1,0]])
==> [1,0,1,0,1,0,1,0]

The list comprehension syntax in Haskell can be implemented in terms of the list monad. List com-
prehensions can be considered syntactic sugar for more obviously monadic implementations. Examples
a and b illustrate these use cases.

The first example (a) illustrates how to write a list comprehension. Although the syntax looks strange
at first, there are elements of it that may look familiar. For instance, the use of <- is just like bind in
a do notation: It binds an element of a list to a name. However, one major difference is apparent: a
seems to lack a call to return . Not to worry, though, the [] fills this role. This syntax can be easily
desugared by the compiler to an explicit invocation of return . Furthermore, it serves to remind the user
that the computation takes place in the List monad.

a = [
f x y | -- Corresponds to 'f x y' in example b
x <- xs,
y <- ys,
x == y -- Corresponds to 'guard $ x == y' in example b

]

The second example (b) shows the list comprehension above rewritten with do notation:

-- Identical to `a`
b = do
x <- xs
y <- ys
guard $ x == y -- Corresponds to 'x == y' in example a
return $ f x y -- Corresponds to the '[]' and 'f x y' in example a

The final examples are further illustrations of the List monad. The functions below each return a list
of 3-tuples which contain the possible combinations of the three lists that get bound the names a , b ,
and c . N.B.: Only values in the list bound to a can be used in a position of the tuple; the same fact
holds true for the lists bound to b and c .

77 MONADS

example :: [(Int, Int, Int)]
example = do

a <- [1,2]
b <- [10,20]
c <- [100,200]
return (a,b,c)

-- [(1,10,100),(1,10,200),(1,20,100),(1,20,200),(2,10,100),(2,10,200),(2,20,100),(2,20,200)]

desugared :: [(Int, Int, Int)]
desugared = [1, 2] >>= \a ->

[10, 20] >>= \b ->
[100, 200] >>= \c ->
return (a, b, c)

-- [(1,10,100),(1,10,200),(1,20,100),(1,20,200),(2,10,100),(2,10,200),(2,20,100),(2,20,200)]

2.8 IO Monad
Perhaps the most (in)famous example in Haskell of a type that forms a monad is IO . A value of type
IO a is a computation which, when performed, does some I/O before returning a value of type a . These

computations are called actions. IO actions executed in main are the means by which a program can
operate on or access information from the external world. IO actions allow the program to do many
things, including, but not limited to:

• Print a String to the terminal
• Read and parse input from the terminal
• Read from or write to a file on the system
• Establish an ssh connection to a remote computer
• Take input from a radio antenna for signal processing
• Launch the missiles.

Conceptualizing I/O as a monad enables the developer to access information from outside the program,
but also to use pure functions to operate on that information as data. The following examples will show
how we can use IO actions and IO values to receive input from stdin and print to stdout.

Perhaps the most immediately useful function for doing I/O in Haskell is putStrLn . This function
takes a String and returns an IO () . Calling it from main will result in the String being printed to
stdout followed by a newline character.

putStrLn :: String -> IO ()

Here is some code that prints a couple of lines to the terminal. The first invocation of putStrLn is
executed, causing the String to be printed to stdout. The result is bound to a lambda expression that
discards its argument, and then the next putStrLn is executed.

main :: IO ()
main = putStrLn "Vesihiisi sihisi hississäään." >>=

_ -> putStrLn "Or in English: 'The water devil was hissing in her elevator'."

https://wiki.haskell.org/Introduction_to_Haskell_IO/Actions

MONADS 78

-- Sugared code, written with do notation
main :: IO ()
main = do putStrLn "Vesihiisi sihisi hississäään."

putStrLn "Or in English: 'The water devil was hissing in her elevator'."

Another useful function is getLine which has type IO String . This function gets a line of input from
stdin. The developer can then bind this line to a name in order to operate on the value within the program.

getLine :: IO String

The code below demonstrates a simple combination of these two functions as well as desugaring IO
code. First, putStrLn prints a String to stdout to ask the user to supply their name, with the result
being bound to a lambda that discards it argument. Then, getLine is executed, supplying a prompt to
the user for entering their name. Next, the resultant IO String is bound to name and passed to putStrLn .
Finally, the program prints the name to the terminal.

main :: IO ()
main = do putStrLn "What is your name: "

name <- getLine
putStrLn name

The next code block is the desugared equivalent of the previous example where the uses of (>>=) are
made explicit.

main :: IO ()
main = putStrLn "What is your name:" >>=

_ -> getLine >>=
\name -> putStrLn name

Our final example executes in the same way as the previous two examples. This example, though, uses
the special (>>) operator to take the place of binding a result to the lambda that discards its argument.

main :: IO ()
main = putStrLn "What is your name: " >> (getLine >>= (\name -> putStrLn name))

See:

• Haskell 2010: Basic/Input Output

2.9 What’s the point?
Although it is difficult, if not impossible, to touch, see, or otherwise physically interact with a monad, this
construct has some very interesting implications for programmers. For instance, consider the non-intuitive

http://www.haskell.org/onlinereport/haskell2010/haskellch7.html

79 MONADS

fact that we now have a uniform interface for talking about three very different, but foundational ideas
for programming: Failure, Collections and Effects.

Let’s write down a new function called sequence which folds a function mcons over a list of monadic
computations. We can think of mcons as analogous to the list constructor (i.e. (a : b : [])) except it
pulls the two list elements out of two monadic values (p , q) by means of bind. The bound values are then
joined with the list constructor : , before finally being rewrapped in the appropriate monadic context
with return .

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])

mcons :: Monad m => m t -> m [t] -> m [t]
mcons p q = do
x <- p -- 'x' refers to a singleton value
y <- q -- 'y' refers to a list. Because of this fact, 'x' can be
return (x:y) -- prepended to it

What does this function mean in terms of each of the monads discussed above?
Maybe
For the Maybe monad, sequencing a list of values within the Maybe context allows us to collect the

results of a series of computations which can possibly fail. However, sequence yields the aggregated values
only if each computation succeeds. In other words, if even one of the Maybe values in the initial list passed
to sequence is a Nothing , the result of evaluating sequence for the whole list will also be Nothing .

sequence :: [Maybe a] -> Maybe [a]

sequence [Just 3, Just 4]
-- Just [3,4]

sequence [Just 3, Just 4, Nothing] -- Since one of the results is Nothing,
-- Nothing -- the whole computation fails

List
The bind operation for the list monad forms the pairwise list of elements from the two operands. Thus,

folding the binds contained in mcons over a list of lists with sequence implements the general Cartesian
product for an arbitrary number of lists.

sequence :: [[a]] -> [[a]]

sequence [[1,2,3],[10,20,30]]
-- [[1,10],[1,20],[1,30],[2,10],[2,20],[2,30],[3,10],[3,20],[3,30]]

MONADS 80

IO
Applying sequence within the IO context results in still a different result. The function takes a list

of IO actions, performs them sequentially, and then gives back the list of resulting values in the order
sequenced.

sequence :: [IO a] -> IO [a]

sequence [getLine, getLine, getLine]
-- a -- a, b, and 9 are the inputs given by the
-- b -- user at the prompt
-- 9
-- ["a", "b", "9"] -- All inputs are returned in a list as

-- an IO [String].

So there we have it, three fundamental concepts of computation that are normally defined indepen-
dently of each other actually all share this similar structure. This unifying pattern can be abstracted out
and reused to build higher abstractions that work for all current and future implementations. If you want
a motivating reason for understanding monads, this is it! These insights are the essence of what I wish I
knew about monads looking back.

See:

• Control.Monad

2.10 Reader Monad
The reader monad lets us access shared immutable state within a monadic context.

ask :: Reader r r
asks :: (r -> a) -> Reader r a
local :: (r -> r) -> Reader r a -> Reader r a
runReader :: Reader r a -> r -> a

import Control.Monad.Reader

data MyContext = MyContext
{ foo :: String
, bar :: Int
} deriving (Show)

computation :: Reader MyContext (Maybe String)
computation = do
n <- asks bar
x <- asks foo
if n > 0

http://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Monad.html#g:4

81 MONADS

then return (Just x)
else return Nothing

ex1 :: Maybe String
ex1 = runReader computation $ MyContext "hello" 1

ex2 :: Maybe String
ex2 = runReader computation $ MyContext "haskell" 0

A simple implementation of the Reader monad:

newtype Reader r a = Reader { runReader :: r -> a }

instance Monad (Reader r) where
return a = Reader $ _ -> a
m >>= k = Reader $ \r -> runReader (k (runReader m r)) r

ask :: Reader a a
ask = Reader id

asks :: (r -> a) -> Reader r a
asks f = Reader f

local :: (r -> r) -> Reader r a -> Reader r a
local f m = Reader $ runReader m . f

2.11 Writer Monad
The writer monad lets us emit a lazy stream of values from within a monadic context.

tell :: w -> Writer w ()
execWriter :: Writer w a -> w
runWriter :: Writer w a -> (a, w)

import Control.Monad.Writer

type MyWriter = Writer [Int] String

example :: MyWriter
example = do
tell [1..3]
tell [3..5]
return "foo"

MONADS 82

output :: (String, [Int])
output = runWriter example
-- ("foo", [1, 2, 3, 3, 4, 5])

A simple implementation of the Writer monad:

import Data.Monoid

newtype Writer w a = Writer { runWriter :: (a, w) }

instance Monoid w => Monad (Writer w) where
return a = Writer (a, mempty)
m >>= k = Writer $ let

(a, w) = runWriter m
(b, w') = runWriter (k a)
in (b, w `mappend` w')

execWriter :: Writer w a -> w
execWriter m = snd (runWriter m)

tell :: w -> Writer w ()
tell w = Writer ((), w)

This implementation is lazy, so some care must be taken that one actually wants to only generate a
stream of thunks. Most often the lazy writer is not suitable for use, instead implement the equivalent
structure by embedding some monomial object inside a StateT monad, or using the strict version.

import Control.Monad.Writer.Strict

2.12 State Monad
The state monad allows functions within a stateful monadic context to access and modify shared state.

runState :: State s a -> s -> (a, s)
evalState :: State s a -> s -> a
execState :: State s a -> s -> s

import Control.Monad.State

test :: State Int Int
test = do
put 3

https://en.wikipedia.org/wiki/Monomial

83 MONADS

modify (+1)
get

main :: IO ()
main = print $ execState test 0

The state monad is often mistakenly described as being impure, but it is in fact entirely pure and the
same effect could be achieved by explicitly passing state. A simple implementation of the State monad
takes only a few lines:

newtype State s a = State { runState :: s -> (a,s) }

instance Monad (State s) where
return a = State $ \s -> (a, s)

State act >>= k = State $ \s ->
let (a, s') = act s
in runState (k a) s'

get :: State s s
get = State $ \s -> (s, s)

put :: s -> State s ()
put s = State $ _ -> ((), s)

modify :: (s -> s) -> State s ()
modify f = get >>= \x -> put (f x)

evalState :: State s a -> s -> a
evalState act = fst . runState act

execState :: State s a -> s -> s
execState act = snd . runState act

2.13 Why are monads confusing?
So many monad tutorials have been written that it begs the question: what makes monads so difficult
when first learning Haskell? I hypothesize there are three aspects to why this is so:

1. There are several levels of indirection with desugaring.

A lot of the Haskell we write is radically rearranged and transformed into an entirely new form under
the hood.

Most monad tutorials will not manually expand out the do-sugar. This leaves the beginner thinking
that monads are a way of dropping into a pseudo-imperative language inside of pure code and further
fuels the misconception that specific instances like IO describe monads in their full generality. When in
fact the IO monad is only one among many instances.

MONADS 84

main = do
x <- getLine
putStrLn x
return ()

Being able to manually desugar is crucial to understanding.

main =
getLine >>= \x ->

putStrLn x >>= _ ->
return ()

2. Infix operators for higher order functions are not common in other languages.

(>>=) :: Monad m => m a -> (a -> m b) -> m b

On the left hand side of the operator we have an m a and on the right we have a -> m b . Thus, this
operator is asymmetric, utilizing a monadic value on the left and a higher order function on the right.
Although some languages do have infix operators that are themselves higher order functions, it is still a
rather rare occurrence.

Thus, with a function desugared, it can be confusing that (>>=) operator is in fact building up a much
larger function by composing functions together.

main =
getLine >>= \x ->

putStrLn x >>= _ ->
return ()

Written in prefix form, it becomes a little bit more digestible.

main =
(>>=) getLine (\x ->

(>>=) (putStrLn x) (_ ->
return ()

)
)

Perhaps even removing the operator entirely might be more intuitive coming from other languages.

main = bind getLine (\x -> bind (putStrLn x) (_ -> return ()))
where

bind x y = x >>= y

85 MONADS

3. Ad-hoc polymorphism is not commonplace in other languages.

Haskell’s implementation of overloading can be unintuitive if one is not familiar with type inference.
Indeed, newcomers to Haskell often believe they can gain an intuition for monads in a way that will unify
their understanding of all monads. This is a fallacy, however, because any particular monad instance is
merely an instantiation of the monad typeclass functions implemented for that particular type.

This is all abstracted away from the user, but the (>>=) or bind function is really a function of 3
arguments with the extra typeclass dictionary argument ($dMonad) implicitly threaded around.

main $dMonad = bind $dMonad getLine (\x -> bind $dMonad (putStrLn x) (_ -> return $dMonad ()))

In general, this is true for all typeclasses in Haskell and it’s true here as well, except in the case where
the parameter of the monad class is unified (through inference) with a concrete class instance.

Now, all of these transformations are trivial once we understand them, they’re just typically not
discussed. In my opinion the fundamental fallacy of monad tutorials is not that intuition for monads is
hard to convey (nor are metaphors required!), but that novices often come to monads with an incomplete
understanding of points (1), (2), and (3) and then trip on the simple fact that monads are the first example
of a Haskell construct that is the confluence of all three.

Thus we make monads more difficult than they need to be. At the end of the day they are simple
algebraic critters.

MONADS 86

Chapter 3

Monad Transformers

3.1 mtl / transformers
The descriptions of Monads in the previous chapter are a bit of a white lie. Modern Haskell monad
libraries typically use a more general form of these, written in terms of monad transformers which allow
us to compose monads together to form composite monads.

Imagine if you had an application that wanted to deal with a Maybe monad wrapped inside a State
Monad, all wrapped inside the IO monad. This is the problem that monad transformers solve, a problem
of composing different monads. At their core, monad transformers allow us to nest monadic computations
in a stack with an interface to exchange values between the levels, called lift:

lift :: (Monad m, MonadTrans t) => m a -> t m a

In production code, the monads mentioned previously may actually be their more general transformer
form composed with the Identity monad.

type State s = StateT s Identity
type Writer w = WriterT w Identity
type Reader r = ReaderT r Identity

The following table shows the relationships between these forms:

Monad Transformer Type Transformed Type
Maybe MaybeT Maybe a m (Maybe a)
Reader ReaderT r -> a r -> m a
Writer WriterT (a,w) m (a,w)
State StateT s -> (a,s) s -> m (a,s)

Just as the base monad class has laws, monad transformers also have several laws:
Law #1

lift . return = return

87

MONAD TRANSFORMERS 88

Law #2

lift (m >>= f) = lift m >>= (lift . f)

Or equivalently:
Law #1

lift (return x)

= return x

Law #2

do x <- lift m
lift (f x)

= lift $ do x <- m
f x

It’s useful to remember that transformers compose outside-in but are unrolled inside out.

3.2 Transformers
The lift definition provided above comes from the transformers library along with an IO-specialized form
called liftIO :

lift :: (Monad m, MonadTrans t) => m a -> t m a
liftIO :: MonadIO m => IO a -> m a

These definitions rely on the following typeclass definitions, which describe composing one monad with
another monad (the “t” is the transformed second monad):

class MonadTrans t where
lift :: Monad m => m a -> t m a

class (Monad m) => MonadIO m where
liftIO :: IO a -> m a

instance MonadIO IO where
liftIO = id

89 MONAD TRANSFORMERS

3.3 Basics
The most basic use requires us to use the T-variants for each of the monad transformers in the outer
layers and to explicitly lift and return values between the layers. Monads have kind (* -> *) , so
monad transformers which take monads to monads have ((* -> *) -> * -> *) :

Monad (m :: * -> *)
MonadTrans (t :: (* -> *) -> * -> *)

For example, if we wanted to form a composite computation using both the Reader and Maybe monads,
using MonadTrans we could use Maybe inside of a ReaderT to form ReaderT t Maybe a .

import Control.Monad.Reader

type Env = [(String, Int)]
type Eval a = ReaderT Env Maybe a

data Expr
= Val Int
| Add Expr Expr
| Var String
deriving (Show)

eval :: Expr -> Eval Int
eval ex = case ex of

Val n -> return n

Add x y -> do
a <- eval x
b <- eval y
return (a+b)

Var x -> do
env <- ask
val <- lift (lookup x env)
return val

env :: Env
env = [("x", 2), ("y", 5)]

ex1 :: Eval Int
ex1 = eval (Add (Val 2) (Add (Val 1) (Var "x")))

example1, example2 :: Maybe Int
example1 = runReaderT ex1 env
example2 = runReaderT ex1 []

The fundamental limitation of this approach is that we find ourselves lift.lift.lift ing and return.return.return ing
a lot.

MONAD TRANSFORMERS 90

3.4 mtl
The mtl library is the most commonly used interface for these monad tranformers, but mtl depends on
the transformers library from which it generalizes the “basic” monads described above into more general
transformers, such as the following:

instance Monad m => MonadState s (StateT s m)
instance Monad m => MonadReader r (ReaderT r m)
instance (Monoid w, Monad m) => MonadWriter w (WriterT w m)

This solves the “lift.lift.lifting” problem introduced by transformers.

3.5 ReaderT
By way of an example there exist three possible forms of the Reader monad. The first is the primitive
version which no longer exists, but which is useful for understanding the underlying ideas. The other two
are the transformers and mtl variants.

Reader

newtype Reader r a = Reader { runReader :: r -> a }

instance MonadReader r (Reader r) where
ask = Reader id
local f m = Reader (runReader m . f)

ReaderT

newtype ReaderT r m a = ReaderT { runReaderT :: r -> m a }

instance (Monad m) => Monad (ReaderT r m) where
return a = ReaderT $ _ -> return a
m >>= k = ReaderT $ \r -> do

a <- runReaderT m r
runReaderT (k a) r

instance MonadTrans (ReaderT r) where
lift m = ReaderT $ _ -> m

MonadReader

class (Monad m) => MonadReader r m | m -> r where
ask :: m r
local :: (r -> r) -> m a -> m a

instance (Monad m) => MonadReader r (ReaderT r m) where

91 MONAD TRANSFORMERS

ask = ReaderT return
local f m = ReaderT $ \r -> runReaderT m (f r)

So, hypothetically the three variants of ask would be:

ask :: Reader r r
ask :: Monad m => ReaderT r m r
ask :: MonadReader r m => m r

In practice the mtl variant is the one commonly used in Modern Haskell.

3.6 Newtype Deriving
Newtype deriving is a common technique used in combination with the mtl library and as such we will
discuss its use for transformers in this section.

As discussed in the newtypes section, newtypes let us reference a data type with a single constructor
as a new distinct type, with no runtime overhead from boxing, unlike an algebraic datatype with a single
constructor. Newtype wrappers around strings and numeric types can often drastically reduce accidental
errors.

Consider the case of using a newtype to distinguish between two different text blobs with different
semantics. Both have the same runtime representation as a text object, but are distinguished statically,
so that plaintext can not be accidentally interchanged with encrypted text.

newtype Plaintext = Plaintext Text
newtype Cryptotext = Cryptotext Text

encrypt :: Key -> Plaintext -> Cryptotext
decrypt :: Key -> Cryptotext -> Plaintext

This is a surprisingly powerful tool as the Haskell compiler will refuse to compile any function which
treats Cryptotext as Plaintext or vice versa!

The other common use case is using newtypes to derive logic for deriving custom monad transformers
in our business logic. Using -XGeneralizedNewtypeDeriving we can recover the functionality of instances of
the underlying types composed in our transformer stack.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

newtype Quantity v a = Quantity a
deriving (Eq, Ord, Num, Show)

data Haskeller
type Haskellers = Quantity Haskeller Int

a = Quantity 2 :: Haskellers
b = Quantity 6 :: Haskellers

MONAD TRANSFORMERS 92

totalHaskellers :: Haskellers
totalHaskellers = a + b

newtype Velocity = Velocity { unVelocity :: Double }
deriving (Eq, Ord)

v :: Velocity
v = Velocity 2.718

x :: Double
x = 2.718

-- Type error is caught at compile time even though
-- they are the same value at runtime!
err = v + x

Couldn't match type `Double' with `Velocity'
Expected type: Velocity
Actual type: Double

In the second argument of `(+)', namely `x'
In the expression: v + x

Using newtype deriving with the mtl library typeclasses we can produce flattened transformer types
that don’t require explicit lifting in the transform stack. For example, here is a little stack machine
involving the Reader, Writer and State monads.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Control.Monad.Reader
import Control.Monad.Writer
import Control.Monad.State

type Stack = [Int]
type Output = [Int]
type Program = [Instr]

type VM a = ReaderT Program (WriterT Output (State Stack)) a

newtype Comp a = Comp { unComp :: VM a }
deriving (Functor, Applicative, Monad, MonadReader Program, MonadWriter Output, MonadState Stack)

data Instr = Push Int | Pop | Puts

evalInstr :: Instr -> Comp ()
evalInstr instr = case instr of
Pop -> modify tail
Push n -> modify (n:)

93 MONAD TRANSFORMERS

Puts -> do
tos <- gets head
tell [tos]

eval :: Comp ()
eval = do
instr <- ask
case instr of
[] -> return ()
(i:is) -> evalInstr i >> local (const is) eval

execVM :: Program -> Output
execVM = flip evalState [] . execWriterT . runReaderT (unComp eval)

program :: Program
program = [

Push 42,
Push 27,
Puts,
Pop,
Puts,
Pop

]

main :: IO ()
main = mapM_ print $ execVM program

Pattern matching on a newtype constructor compiles into nothing. For example the extractB function
below does not scrutinize the MkB constructor like extractA does, because MkB does not exist at runtime;
it is purely a compile-time construct.

data A = MkA Int
newtype B = MkB Int

extractA :: A -> Int
extractA (MkA x) = x

extractB :: B -> Int
extractB (MkB x) = x

3.7 Efficiency
The second monad transformer law guarantees that sequencing consecutive lift operations is semantically
equivalent to lifting the results into the outer monad.

do x <- lift m == lift $ do x <- m
lift (f x) f x

MONAD TRANSFORMERS 94

Although they are guaranteed to yield the same result, the operation of lifting the results between the
monad levels is not without cost and crops up frequently when working with the monad traversal and
looping functions. For example, all three of the functions on the left below are less efficient than the right
hand side which performs the bind in the base monad instead of lifting on each iteration.

-- Less Efficient More Efficient
forever (lift m) == lift (forever m)
mapM_ (lift . f) xs == lift (mapM_ f xs)
forM_ xs (lift . f) == lift (forM_ xs f)

3.8 Monad Morphisms
Although the base monad transformer package provides a MonadTrans class for lifting to another monad:

lift :: Monad m => m a -> t m a

But oftentimes we need to work with and manipulate our monad transformer stack to either produce
new transformers, modify existing ones or extend an upstream library with new layers. The mmorph library
provides the capacity to compose monad morphism transformation directly on transformer stacks. This is
achieved primarily by use of the hoist function which maps a function from a base monad into a function
over a transformed monad.

hoist :: Monad m => (forall a. m a -> n a) -> t m b -> t n b

Hoist takes a monad morphism (a mapping from a m a to a n a) and applies in on the inner value
monad of a transformer stack, transforming the value under the outer layer.

The monad morphism generalize takes an Identity monad into any another monad m .

generalize :: Monad m => Identity a -> m a

For example, it generalizes State s a (which is StateT s Identity a) to StateT s m a .
So we can generalize an existing transformer to lift an IO layer onto it.

import Control.Monad.State
import Control.Monad.Morph

type Eval a = State [Int] a

runEval :: [Int] -> Eval a -> a
runEval = flip evalState

pop :: Eval Int

95 MONAD TRANSFORMERS

pop = do
top <- gets head
modify tail
return top

push :: Int -> Eval ()
push x = modify (x:)

ev1 :: Eval Int
ev1 = do
push 3
push 4
pop
pop

ev2 :: StateT [Int] IO ()
ev2 = do
result <- hoist generalize ev1
liftIO $ putStrLn $ "Result: " ++ show result

See:

• mmorph

3.9 Effect Systems
The mtl model has several properties which make it suboptimal from a theoretical perspective. Although
it is used widely in production Haskell we will discuss its shortcomings and some future models called
effect systems.

Extensibility
When you add a new custom transformer inside of our business logic we’ll typically have to derive a

large number of boilerplate instances to compose it inside of existing mtl transformer stack. For example
adding MonadReader instance for n number of undecidable instances that do nothing but mostly lifts. You
can see this massive boilerplate all over the design of the mtl library and its transitive dependencies.

instance MonadReader r m => MonadReader r (ExceptT e m) where
ask = lift ask
local = mapExceptT . local
reader = lift . reader

instance MonadReader r m => MonadReader r (IdentityT m) where
ask = lift ask
local = mapIdentityT . local
reader = lift . reader

-- Same for ListT, MaybeT, ...

...

This is called the n2 instance problem or the instance boilerplate problem and remains an open problem
of mtl.

https://hackage.haskell.org/package/mmorph

MONAD TRANSFORMERS 96

Composing Transformers
Effects don’t generally commute from a theoretical perspective and as such monad transformer com-

position is not in general commutative. For example stacking State and Except is not commutative:

stateExcept :: StateT s (Except e) a -> s -> Either e (a, s)
stateExcept m s = runExcept (runStateT m s)

exceptState :: ExceptT e (State s) a -> s -> (Either e a, s)
exceptState m s = runState (runExceptT m) s

In addition, the standard method of deriving mtl classes for a transformer stack breaks down when
using transformer stacks with the same monad at different layers of the stack. For example stacking
multiple State transformers is a pattern that shows up quite frequently.

newtype Example = StateT Int (State String)
deriving (MonadState Int)

In order to get around this you would have to handwrite the instances for this transformer stack and
manually lift anytime you perform a State action. This is a suboptimal design and difficult to route around
without massive boilerplate.

While these problems exist, most users of mtl don’t implement new transformers at all and can get by.
However in recent years there have been written many other libraries that have explored the design space
of alternative effect modeling systems. These systems are still quite early compared to the mtl but some
are able to avoid some of the shortcomings of mtl in favour of newer algebraic models of effects. The two
most commonly used libraries are:

• polysemy

• fused-effects

3.10 Polysemy
Polysemy is a new effect system library based on the free-monad approach to modeling effects. The
library uses modern type system features to model effects on top of a Sem monad. The monad will have
a members constraint type which constrains a parameter r by a type-level list of effects in the given unit
of computation.

Members [.. effects ..] => Sem r a

For example we seamlessly mix and match error handling, tracing, and stateful updates inside of one
computation without the need to create a layered monad. This would look something like the following:

Members '[Trace, State Example, Error MyError] r => Sem r ()

97 MONAD TRANSFORMERS

These effects can then be evaluated using an interpreter function which unrolls and potentially evaluates
the effects of the Sem free monad. Some of these interpreters for tracing, state and error are similar to
the evaluations for monad transformers but evaluate one layer of type-level list of the effect stack.

runError :: Sem (Error e ': r) a -> Sem r (Either e a)
runState :: s -> Sem (State s ': r) a -> Sem r (s, a)
runTraceList :: Sem (Trace ': r) a -> Sem r ([String], a)

The resulting Sem monad with a single field can then be lowered into a single resulting monad such
as IO or Either.

runFinal :: Monad m => Sem '[Final m] a -> m a
embedToFinal :: (Member (Final m) r, Functor m) => Sem (Embed m ': r) a -> Sem r a

The library provides rich set of of effects that can replace many uses of monad transformers.

• Polysemy.Async - Asynchronous computations
• Polysemy.AtomicState - Atomic operations
• Polysemy.Error - Error handling
• Polysemy.Fail - Computations that fail
• Polysemy.IO - Monadic IO
• Polysemy.Input - Input effects
• Polysemy.Output - Output effects
• Polysemy.NonDet - Non-determinism effect
• Polysemy.Reader - Contextual state a la Reader monad
• Polysemy.Resource - Resources with finalizers
• Polysemy.State - Stateful effects
• Polysemy.Trace - Tracing effect
• Polysemy.Writer - Accumulation effect a la Writer monad

For example for a simple stateful computation with only a single effect.

data Example = Example { x :: Int, y :: Int }
deriving (Show)

-- Stateful update to Example datastructure.
example1 :: Member (State Example) r => Sem r ()
example1 = do
modify $ \s -> s {x = 1}
pure ()

runExample1 :: IO ()
runExample1 = do
(result, _) <-
runFinal

$ embedToFinal @IO
$ runState (Example 0 0) example1

print result

MONAD TRANSFORMERS 98

And a more complex example which combines multiple effects:

import Polysemy
import Polysemy.Error
import Polysemy.State
import Polysemy.Trace

data MyError = MyError
deriving (Show)

-- Stateful update to Example datastructure, with errors and tracing.
example2 :: Members '[Trace, State Example, Error MyError] r => Sem r ()
example2 = do

modify $ \s -> s {x = 1, y = 2}
trace "foo"
throw MyError
pure ()

runExample2 :: IO ()
runExample2 = do
result <-

runFinal
$ embedToFinal @IO
$ errorToIOFinal @MyError
$ runState (Example 0 0)
$ traceToIO example2

print result

Polysemy will require the following language extensions to operate:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}

The use of free-monads is not entirely without cost, and there are experimental GHC plugins which
can abstract away some of the overhead from the effect stack. Code thats makes use of polysemy should
enable the following GHC flags to enable aggressive typeclass specialisation:

• -flate-specialise

• -fspecialise-aggressively

3.11 Fused Effects
Fused-effects is an alternative approach to effect systems based on an algebraic effects model. Unlike
polysemy, fused-effects does not use a free monad as an intermediate form. Fused-effects has competitive

99 MONAD TRANSFORMERS

performance compared with mtl and doesn’t require additional GHC plugins or extension compiler fusion
rules to optimise away the abstraction overhead.

The fused-effects library exposes a constraint kind called Has which annotates a type signature that
contains effectful logic. In this signature m is called the carrier for the sig effect signature containing
the eff effect.

type Has eff sig m = (Members eff sig, Algebra sig m)

For example the traditional State effect is modeled by the following datatype with three parameters.
The s parameter is the state object, the m is the effect parameter. This exposes the same interface as
Control.Monad.State except for the Has constraint instead.

data State s m k
= Get (s -> m k)
| Put s (m k)
deriving (Functor)

get :: Has (State s) sig m => m s
put :: Has (State s) sig m => s -> m ()

The Carrier for the State effect is defined as StateC and the evaluators for the state carrier are defined
in the same interface as mtl except they evaluate into a result containing the effect parameter m .

newtype StateC s m a = StateC (s -> m (s, a))
deriving (Functor)

runState :: s -> StateC s m a -> m (s, a)

The evaluators for the effect lift monadic actions from an effectful computation.

runM :: LiftC m a -> m a
run :: Identity a -> a

Fused-effects requires the following language extensions to operate.

{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}

Minimal Example
A minimal example using the State effect to track stateful updates to a single integral value.

MONAD TRANSFORMERS 100

example1 :: Has (State Integer) sig m => m Integer
example1 = do
modify (+ 1)
modify (* 10)
get

The evaluation of this monadic state block results in a m Integer with the Algebra and Effect context.
This can then be evaluated into either Identity or IO using run .

ex1 :: (Algebra sig m, Effect sig) => m Integer
ex1 = evalState (1 :: Integer) example1

run1 :: Identity Integer
run1 = runM ex1

run2 :: IO Integer
run2 = runM ex1

Composite Effects
Consider a more complex example which combines exceptions with Throw effect with State . Impor-

tantly note that functions runThrow and evalState cannot infer the state type from the signature alone
and thus require additional annotations. This differs from mtl which typically has more optimal inference.

example2 ::
(Has (State (Double, Double)) sig m,

Has (Throw ArithException) sig m
) =>
m Double

example2 = do
(a, b) <- get
if b == 0

then throwError DivideByZero
else pure (a / b)

ex2 :: (Algebra sig m, Effect sig) => m (Either ArithException Double)
ex2 = runThrow $ evalState (1 :: Double, 2 :: Double) example2

ex3 :: (Algebra sig m, Effect sig) => m (Either ArithException Double)
ex3 = evalState (1 :: Double, 0 :: Double) (runThrow example2)

Chapter 4

Language Extensions

4.1 Philosophy
Haskell takes a drastically different approach to language design than most other languages as a result of
being the synthesis of input from industrial and academic users. GHC allows the core language itself to
be extended with a vast range of opt-in flags which change the semantics of the language on a per-module
or per-project basis. While this does add a lot of complexity at first, it also adds a level of power and
flexibility for the language to evolve at a pace that is unrivaled in the broader space of programming
language design.

4.2 Classes
It’s important to distinguish between different classes of GHC language extensions: general and specialized.

The inherent problem with classifying extensions into general and specialized categories is that it is a
subjective classification. Haskellers who do theorem proving research will have a very different interpre-
tation of Haskell than people who do web programming. Thus, we will use the following classifications:

• Benign implies both that importing the extension won’t change the semantics of the module if not
used and that enabling it makes it no easier to shoot yourself in the foot.

• Historical implies that one shouldn’t use this extension, it is in GHC purely for backwards compat-
ibility. Sometimes these are dangerous to enable.

• Steals syntax means that enabling this extension causes certain code, that is valid in vanilla Haskell,
to be no longer be accepted. For example, f $(a) is the same as f $ (a) in Haskell98, but
TemplateHaskell will interpret $(a) as a splice.

Benign Historical Extends Syntax Use Use
AllowAmbiguousTypes Specialized Typelevel Programming
Arrows � Specialized Syntax Extension
AutoDeriveTypeable Specialized Metaprogramming
BangPatterns � � General Strictness Annotation
CApiFFI Specialized FFI
ConstrainedClassMethods Specialized Typelevel Programming
ConstraintKinds Specialized Typelevel Programming
CPP � � General Preprocessor
DataKinds Specialized Typelevel Programming
DatatypeContexts � � Deprecated Deprecated
DefaultSignatures � Specialized Generic Programming
DeriveDataTypeable � General Generic Programming
DeriveFoldable � General Generic Programming

101

LANGUAGE EXTENSIONS 102

Benign Historical Extends Syntax Use Use
DeriveFunctor � General Generic Programming
DeriveGeneric � General Generic Programming
DerivingStrategies � General Generic Programming
DeriveTraversable � General Generic Programming
DerivingVia � General Generic Programming
DisambiguateRecordFields � � Specialized Syntax Extension
DoRec � � Specialized Syntax Extension
EmptyCase Specialized Syntax Extension
EmptyDataDecls � General Syntax Extension
ExistentialQuantification Specialized Typelevel Programming
ExplicitForAll � Specialized Typelevel Programming
ExplicitNamespaces � � Specialized Syntax Disambiguation
ExtendedDefaultRules � Specialized Generic Programming
FlexibleContexts General Typeclass Extension
FlexibleInstances General Typeclass Extension
ForeignFunctionInterface � General FFI
FunctionalDependencies General Typeclass Extension
GADTs General Typelevel Programming
GADTSyntax � General Syntax Extension
GeneralizedNewtypeDeriving General Typeclass Extension
GHCForeignImportPrim Specialized FFI
ImplicitParams Specialized Typelevel Programming
ImpredicativeTypes Specialized Typelevel Programming
IncoherentInstances Specialized Typelevel Programming
InstanceSigs Specialized Typelevel Programming
InterruptibleFFI Specialized FFI
KindSignatures Specialized Typelevel Programming
LambdaCase � � General Syntax Extension
LiberalTypeSynonyms Specialized Typeclass Extension
MagicHash Specialized GHC Internals
MonadComprehensions � Specialized Syntax Extension
MonoPatBinds Specialized Type Disambiguation
MultiParamTypeClasses � General Typeclass Extension
MultiWayIf � Specialized Syntax Extension
NamedFieldPuns � Specialized Syntax Extension
NegativeLiterals General Type Disambiguation
NoImplicitPrelude Specialized Import Disambiguation
NoMonoLocalBinds General Type Disambiguation
NoMonomorphismRestriction General Type Disambiguation
NPlusKPatterns � � Deprecated Deprecated
NullaryTypeClasses Specialized Typeclass Extension
NumDecimals General Type Disambiguation
OverlappingInstances Specialized Typeclass Extension
OverloadedLists � General Syntax Extension
OverloadedStrings General Syntax Extension
PackageImports � General Import Disambiguation
ParallelArrays Specialized Data Parallel Haskell
ParallelListComp � General Syntax Extension
PatternGuards � General Syntax Extension
PatternSynonyms � � General Syntax Extension
PolyKinds Specialized Typelevel Programming
PolymorphicComponents � Specialized Deprecated
PostfixOperators � � Specialized Syntax Extension

103 LANGUAGE EXTENSIONS

Benign Historical Extends Syntax Use Use
QuasiQuotes Specialized Metaprogramming
Rank2Types � Specialized Historical Artificat
RankNTypes Specialized Typelevel Programming
RebindableSyntax � Specialized Metaprogramming
RecordWildCards � � General Syntax Extension
RecursiveDo Specialized Syntax Extension
RelaxedPolyRec Specialized Type Disambiguation
Role Annotations Specialized Type Disambiguation
Safe Specialized Security Auditing
Safe Imports Specialized Security Auditing
ScopedTypeVariables Specialized Typelevel Programming
StandaloneDeriving � � General Typeclass Extension
TemplateHaskell � � Specialized Metaprogramming
TraditionalRecordSyntax � � Specialized Historical Artificat
TransformListComp � Specialized Syntax Extension
Trustworthy Specialized Security Auditing
TupleSections � General Syntax Extension
TypeFamilies Specialized Typelevel Programming
TypeHoles � General Interactive Typing
TypeInType � Specialized Typelevel Programming
TypeOperators Specialized Typelevel Programming
TypeSynonymInstances � General Typeclass Extension
UnboxedTuples Specialized FFI
UndecidableInstances Specialized Typelevel Programming
UnicodeSyntax � Specialized Syntax Extension
UnliftedFFITypes Specialized FFI
Unsafe Specialized Security Auditing
ViewPatterns � � General Syntax Extension

The golden source of truth for language extensions is the official GHC user’s guide which contains a
plethora of information on the details of these extensions.

See: GHC Extension Reference

4.3 Extension Dependencies
Some language extensions will implicitly enable other language extensions for their operation. The table
below shows the dependencies between various extensions and which sets are implied.

Extension Implies
TypeFamilyDependencies TypeFamilies
TypeInType PolyKinds, DataKinds, KindSignatures
PolyKinds KindSignatures
ScopedTypeVariables ExplicitForAll
RankNTypes ExplicitForAll
ImpredicativeTypes RankNTypes
TemplateHaskell TemplateHaskellQuotes
Strict StrictData
RebindableSyntax NoImplicitPrelude
TypeOperators ExplicitNamespaces
LiberalTypeSynonyms ExplicitForAll
ExistentialQuantification ExplicitForAll
GADTs MonoLocalBinds, GADTSyntax

https://downloads.haskell.org/ghc/latest/docs/html/users_guide/lang.html

LANGUAGE EXTENSIONS 104

Extension Implies
DuplicateRecordFields DisambiguateRecordFields
RecordWildCards DisambiguateRecordFields
DeriveTraversable DeriveFoldable, DeriveFunctor
MultiParamTypeClasses ConstrainedClassMethods
DerivingVia DerivingStrategies
FunctionalDependencies MultiParamTypeClasses
FlexibleInstances TypeSynonymInstances
TypeFamilies MonoLocalBinds, KindSignatures, ExplicitNamespaces
IncoherentInstances OverlappingInstances

4.4 The Benign
It’s not obvious which extensions are the most common but it’s fairly safe to say that these extensions are
benign and are safely used extensively:

• NoImplicitPrelude
• OverloadedStrings
• LambdaCase
• FlexibleContexts
• FlexibleInstances
• GeneralizedNewtypeDeriving
• TypeSynonymInstances
• MultiParamTypeClasses
• FunctionalDependencies
• NoMonomorphismRestriction
• GADTs
• BangPatterns
• DeriveGeneric
• DeriveAnyClass
• DerivingStrategies
• ScopedTypeVariables

4.5 The Advanced
These extensions are typically used by advanced projects that push the limits of what is possible with
Haskell to enforce complex invariants and very type-safe APIs.

• PolyKinds
• DataKinds
• DerivingVia
• GADTs
• RankNTypes
• ExistentialQuantification
• TypeFamilies
• TypeOperators
• TypeApplications
• UndecidableInstances

4.6 The Lowlevel
These extensions are typically used by low-level libraries that are striving for optimal performance or need
to integrate with foreign functions and native code. Most of these are used to manipulate base machine

105 LANGUAGE EXTENSIONS

types and interface directly with the low-level byte representations of data structures.

• CPP
• BangPatterns
• CApiFFI
• Strict
• StrictData
• RoleAnnotations
• ForeignFunctionInterface
• InterruptibleFFI
• UnliftedFFITypes
• MagicHash
• UnboxedSums
• UnboxedTuples

4.7 The Dangerous
GHC’s typechecker sometimes casually tells us to enable language extensions when it can’t solve certain
problems. Unless you know what you’re doing, these extensions almost always indicate a design flaw and
shouldn’t be turned on to remedy the error at hand, as much as GHC might suggest otherwise!

• AllowAmbiguousTypes
• DatatypeContexts
• OverlappingInstances
• IncoherentInstances
• ImpredicativeTypes

4.8 NoMonomorphismRestriction
The NoMonomorphismRestriction allows us to disable the monomorphism restriction typing rule GHC
uses by default. See monomorphism restriction.

For example, if we load the following module into GHCi

module Bad (foo,bar) where
foo x y = x + y
bar = foo 1

And then we attempt to call the function bar with a Double, we get a type error:

�: bar 1.1
<interactive>:2:5: error:

• No instance for (Fractional Integer)
arising from the literal ‘1.1’

• In the first argument of ‘bar’, namely ‘1.1’
In the expression: bar 1.1
In an equation for ‘it’: it = bar 1.1

The problem is that GHC has inferred an overly specific type:

LANGUAGE EXTENSIONS 106

�: :t bar
bar :: Integer -> Integer

We can prevent GHC from specializing the type with this extension:

{-# LANGUAGE NoMonomorphismRestriction #-}

module Good (foo,bar) where
foo x y = x + y
bar = foo 1

Now everything will work as expected:

�: :t bar
bar :: Num a => a -> a

4.9 ExtendedDefaultRules
In the absence of explicit type signatures, Haskell normally resolves ambiguous literals using several
defaulting rules. When an ambiguous literal is typechecked, if at least one of its typeclass constraints is
numeric and all of its classes are standard library classes, the module’s default list is consulted, and the
first type from the list that will satisfy the context of the type variable is instantiated. For instance, given
the following default rules

default (C1 a,...,Cn a)

The following set of heuristics is used to determine what to instantiate the ambiguous type variable
to.

1. The type variable a appears in no other constraints
2. All the classes Ci are standard.
3. At least one of the classes Ci is numerical.

The standard default definition is implicitly defined as (Integer, Double)

This is normally fine, but sometimes we’d like more granular control over defaulting. The -XExtendedDefaultRules
loosens the restriction that we’re constrained with working on Numerical typeclasses and the constraint
that we can only work with standard library classes. For example, if we’d like to have our string literals
(using -XOverloadedStrings) automatically default to the more efficient Text implementation instead of
String we can twiddle the flag and GHC will perform the right substitution without the need for an

explicit annotation on every string literal.

107 LANGUAGE EXTENSIONS

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ExtendedDefaultRules #-}

import qualified Data.Text as T

default (T.Text)

example = "foo"

For code typed at the GHCi prompt, the -XExtendedDefaultRules flag is always on, and cannot be
switched off.

See: Monomorphism Restriction

4.10 Safe Haskell
The Safe Haskell language extensions allow us to restrict the use of unsafe language features using -XSafe
which restricts the import of modules which are themselves marked as Safe. It also forbids the use of
certain language extensions (-XTemplateHaskell) which can be used to produce unsafe code. The primary
use case of these extensions is security auditing of codebases for compliance purposes.

{-# LANGUAGE Safe #-}
{-# LANGUAGE Trustworthy #-}

{-# LANGUAGE Safe #-}

import Unsafe.Coerce
import System.IO.Unsafe

bad1 :: String
bad1 = unsafePerformIO getLine

bad2 :: a
bad2 = unsafeCoerce 3.14 ()

Unsafe.Coerce: Can't be safely imported!
The module itself isn't safe.

See: Safe Haskell

4.11 PartialTypeSignatures
Normally a function is either given a full explicit type signature or none at all. The partial type signature
extension allows something in between.

https://ghc.haskell.org/trac/ghc/wiki/SafeHaskell

LANGUAGE EXTENSIONS 108

Partial types may be used to avoid writing uninteresting pieces of the signature, which can be conve-
nient in development:

{-# LANGUAGE PartialTypeSignatures #-}

triple :: Int -> _
triple i = (i,i,i)

If the -Wpartial-type-signatures GHC option is set, partial types will still trigger warnings.
See:

• Partial Type Signatures

4.12 RecursiveDo
Recursive do notation allows for the use of self-reference expressions on both sides of a monadic bind. For
instance the following example uses lazy evaluation to generate an infinite list. This is sometimes used
to instantiate a cyclic datatype inside a monadic context where the datatype needs to hold a reference to
itself.

{-# LANGUAGE RecursiveDo #-}

justOnes :: Maybe [Int]
justOnes = do
rec xs <- Just (1:xs)
return (map negate xs)

See: Recursive Do Notation

4.13 ApplicativeDo
By default GHC desugars do-notation to use implicit invocations of bind and return. With normal monad
sugar the following…

test :: Monad m => m (a, b, c)
test = do

a <- f
b <- g
c <- h
return (a, b, c)

… desugars into:

https://ghc.haskell.org/trac/ghc/wiki/PartialTypeSignatures
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#the-recursive-do-notation

109 LANGUAGE EXTENSIONS

test :: Monad m => m (a, b, c)
test =
f >>= \a ->
g >>= \b ->
h >>= \c ->

return (a, b, c)

With ApplicativeDo this instead desugars into use of applicative combinators and a laxer Applicative
constraint.

test :: Applicative m => m (a, b, c)
test = do
a <- f
b <- g
c <- h
return (a, b, c)

Which is equivalent to the traditional notation.

test :: Applicative m => m (a, b, c)
test = (,,) <$> f <*> g <*> h

4.14 PatternGuards
Pattern guards are an extension to the pattern matching syntax. Given a <- pattern qualifier, the right
hand side is evaluated and matched against the pattern on the left. If the match fails then the whole
guard fails and the next equation is tried. If it succeeds, then the appropriate binding takes place, and
the next qualifier is matched.

{-# LANGUAGE PatternGuards #-}

combine env x y
| Just a <- lookup x env
, Just b <- lookup y env
= Just $ a + b

| otherwise = Nothing

4.15 ViewPatterns
View patterns are like pattern guards that can be nested inside of other patterns. They are a convenient
way of pattern-matching against values of algebraic data types.

LANGUAGE EXTENSIONS 110

{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE NoMonomorphismRestriction #-}

import Safe

lookupDefault :: Eq a => a -> b -> [(a,b)] -> b
lookupDefault k _ (lookup k -> Just s) = s
lookupDefault _ d _ = d

headTup :: (a, [t]) -> [t]
headTup (headMay . snd -> Just n) = [n]
headTup _ = []

headNil :: [a] -> [a]
headNil (headMay -> Just x) = [x]
headNil _ = []

4.16 TupleSections
The TupleSections syntax extension allows tuples to be constructed similar to how operator sections. With
this extension enabled, tuples of arbitrary size can be “partially” specified with commas and values given
for specific positions in the tuple. For example for a 2-tuple:

{-# LANGUAGE TupleSections #-}

first :: a -> (a, Bool)
first = (,True)

second :: a -> (Bool, a)
second = (True,)

An example for a 7-tuple where three values are specified in the section.

f :: t -> t1 -> t2 -> t3 -> (t, (), t1, (), (), t2, t3)
f = (,(),,(),(),,)

4.17 Postfix Operators
The postfix operators extensions allows user-defined operators that are placed after expressions. For
example, using this extension, we could define a postfix factorial function.

{-# LANGUAGE PostfixOperators #-}

111 LANGUAGE EXTENSIONS

(!) :: Integer -> Integer
(!) n = product [1..n]

example :: Integer
example = (52!)

4.18 MultiWayIf
Multi-way if expands traditional if statements to allow pattern match conditions that are equivalent to a
chain of if-then-else statements. This allows us to write “pattern matching predicates” on a value. This
alters the syntax of Haskell language.

{-# LANGUAGE MultiWayIf #-}

bmiTell :: Float -> Text
bmiTell bmi = if
| bmi <= 18.5 -> "Underweight."
| bmi <= 25.0 -> "Average weight."
| bmi <= 30.0 -> "Overweight."
| otherwise -> "Clinically overweight."

4.19 EmptyCase
GHC normally requires at least one pattern branch in a case statement; this restriction can be relaxed with
the EmptyCase language extension. The case statement then immediately yields a Non-exhaustive patterns in case
if evaluated. For example, the following will compile using this language pragma:

test = case of

4.20 LambdaCase
For case statements, the language extension LambdaCase allows the elimination of redundant free variables
introduced purely for the case of pattern matching on.

Without LambdaCase:

\temp -> case temp of
p1 -> 32
p2 -> 32

With LambdaCase:

LANGUAGE EXTENSIONS 112

\case
p1 -> 32
p2 -> 32

{-# LANGUAGE LambdaCase #-}

data Exp a
= Lam a (Exp a)
| Var a
| App (Exp a) (Exp a)

example :: Exp a -> a
example = \case
Lam a b -> a
Var a -> a
App a b -> example a

4.21 NumDecimals
The extension NumDecimals allows the use of exponential notation for integral literals that are not neces-
sarily floats. Without it, any use of exponential notation induces a Fractional class constraint.

googol :: Fractional a => a
googol = 1e100

{-# LANGUAGE NumDecimals #-}
googol :: Num a => a
googol = 1e100

4.22 PackageImports
The syntax language extension PackageImports allows us to disambiguate hierarchical package names by
their respective package key. This is useful in the case where you have two imported packages that expose
the same module. In practice most of the common libraries have taken care to avoid conflicts in the
namespace and this is not usually a problem in most modern Haskell.

For example we could explicitly ask GHC to resolve that Control.Monad.Error package be drawn from
the mtl library.

import qualified "mtl" Control.Monad.Error as Error
import qualified "mtl" Control.Monad.State as State
import qualified "mtl" Control.Monad.Reader as Reader

113 LANGUAGE EXTENSIONS

4.23 RecordWildCards
Record wild cards allow us to expand out the names of a record as variables scoped as the labels of the
record implicitly. The extension can be used to extract variables names into a scope and/or to assign to
variables in a record drawing(?), aligning the record’s labels with the variables in scope for the assignment.
The syntax introduced is the {..} pattern selector as in the following example:

{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE OverloadedStrings #-}

import Data.Text

data Example = Example
{ e1 :: Int
, e2 :: Text
, e3 :: Text
} deriving (Show)

-- Extracting from a record using wildcards.
scope :: Example -> (Int, Text, Text)
scope Example {..} = (e1, e2, e3)

-- Assign to a record using wildcards.
assign :: Example
assign = Example {..}
where
(e1, e2, e3) = (1, "Kirk", "Picard")

4.24 NamedFieldPuns
NamedFieldPuns provides alternative syntax for accessing record fields in a pattern match.

data D = D {a :: Int, b :: Int}

f :: D -> Int
f D {a, b} = a - b

-- Order doesn't matter
g :: D -> Int
g D {b, a} = a - b

4.25 PatternSynonyms
Suppose we were writing a typechecker, and we needed to parse type signatures. One common solution
would to include a TArr to pattern match on type function signatures. Even though, technically it could

LANGUAGE EXTENSIONS 114

be written in terms of more basic application of the (->) constructor.

data Type
= TVar TVar
| TCon TyCon
| TApp Type Type
| TArr Type Type
deriving (Show, Eq, Ord)

With pattern synonyms we can eliminate the extraneous constructor without losing the convenience
of pattern matching on arrow types. We introduce a new pattern using the pattern keyword.

{-# LANGUAGE PatternSynonyms #-}

pattern TArr t1 t2 = TApp (TApp (TCon "(->)") t1) t2

So now we can write a deconstructor and constructor for the arrow type very naturally.

{-# LANGUAGE PatternSynonyms #-}

import Data.List (foldl1')

type Name = String
type TVar = String
type TyCon = String

data Type
= TVar TVar
| TCon TyCon
| TApp Type Type
deriving (Show, Eq, Ord)

pattern TArr t1 t2 = TApp (TApp (TCon "(->)") t1) t2

tapp :: TyCon -> [Type] -> Type
tapp tcon args = foldl TApp (TCon tcon) args

arr :: [Type] -> Type
arr ts = foldl1' (\t1 t2 -> tapp "(->)" [t1, t2]) ts

elimTArr :: Type -> [Type]
elimTArr (TArr (TArr t1 t2) t3) = t1 : t2 : elimTArr t3
elimTArr (TArr t1 t2) = t1 : elimTArr t2
elimTArr t = [t]

-- (->) a ((->) b a)
-- a -> b -> a

115 LANGUAGE EXTENSIONS

to :: Type
to = arr [TVar "a", TVar "b", TVar "a"]

from :: [Type]
from = elimTArr to

Pattern synonyms can be exported from a module like any other definition by prefixing them with the
prefix pattern .

module MyModule (
pattern Elt

) where

pattern Elt = [a]

• Pattern Synonyms in GHC 8

4.26 DeriveFunctor
Many instances of functors over datatypes with parameters and trivial constructors are the result of
trivially applying a function over the single constructor’s argument. GHC can derive this boilerplate
automatically in deriving clauses if DeriveFunctor is enabled.

{-# LANGUAGE DeriveFunctor #-}

data Tree a = Node a [Tree a]
deriving (Show, Functor)

tree :: Tree Int
tree = fmap (+1) (Node 1 [Node 2 [], Node 3 []])

4.27 DeriveFoldable
Similar to how Functors can be automatically derived, many instances of Foldable for types of kind * -> *
have instances that derive the functions:

• foldMap

• foldr
• null

For instance if we have a custom rose tree and binary tree implementation we can automatically derive
the fold functions for these datatypes automatically for us.

http://mpickering.github.io/posts/2015-12-12-pattern-synonyms-8.html

LANGUAGE EXTENSIONS 116

{-# LANGUAGE DeriveFoldable #-}

data RoseTree a
= RoseTree a [RoseTree a]
deriving (Foldable)

data Tree a
= Leaf a
| Branch (Tree a) (Tree a)
deriving (Foldable)

These will generate the following instances:

instance Foldable RoseTree where
foldr f z (RoseTree a1 a2)

= f a1 ((\ b3 b4 -> foldr (\ b1 b2 -> foldr f b2 b1) b4 b3) a2 z)
foldMap f (RoseTree a1 a2)

= mappend (f a1) (foldMap (foldMap f) a2)
null (RoseTree _ _) = False

instance Foldable Tree where
foldr f z (Leaf a1) = f a1 z
foldr f z (Branch a1 a2)

= (\ b1 b2 -> foldr f b2 b1) a1 ((\ b3 b4 -> foldr f b4 b3) a2 z)
foldMap f (Leaf a1) = f a1
foldMap f (Branch a1 a2) = mappend (foldMap f a1) (foldMap f a2)
null (Leaf _) = False
null (Branch a1 a2) = (&&) (null a1) (null a2)

4.28 DeriveTraversable
Just as with Functor and Foldable, many Traversable instances for single-paramater datatypes of kind
* -> * have trivial implementations of the traverse function which can also be derived automatically.

By enabling DeriveTraversable we can use stock deriving to derive these instances for us.

{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE PartialTypeSignatures #-}

data Tree a = Node a [Tree a]
deriving (Show, Functor, Foldable, Traversable)

tree :: Maybe [Int]
tree = foldMap go (Node [1] [Node [2] [], Node [3,4] []])
where

go [] = Nothing
go xs = Just xs

117 LANGUAGE EXTENSIONS

4.29 DeriveGeneric
Data types in Haskell can derived by GHC with the DeriveGenerics extension which is able to define the
entire structure of the Generic instance and associated type families. See Generics for more details on
what these types mean.

For example the simple custom List type deriving Generic:

{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics

data List a
= Cons a (List a)
| Nil deriving
(Generic)

Will generate the following Generic instance:

instance Generic (List a) where
type
Rep (List a) =

D1
('MetaData "List" "Ghci3" "MyModule" 'False)
(C1

('MetaCons "Cons" 'PrefixI 'False)
(S1

('MetaSel
'Nothing
'NoSourceUnpackedness
'NoSourceStrictness
'DecidedLazy

)
(Rec0 a)
:*: S1

('MetaSel
'Nothing
'NoSourceUnpackedness
'NoSourceStrictness
'DecidedLazy

)
(Rec0 (List a))

)
:+: C1 ('MetaCons "Nil" 'PrefixI 'False) U1

)
from x = M1

(case x of
Cons g1 g2 -> L1 (M1 ((:*:) (M1 (K1 g1)) (M1 (K1 g2))))
Nil -> R1 (M1 U1)

)
to (M1 x) = case x of

LANGUAGE EXTENSIONS 118

(L1 (M1 ((:*:) (M1 (K1 g1)) (M1 (K1 g2))))) -> Cons g1 g2
(R1 (M1 U1)) -> Nil

4.30 DeriveAnyClass
With -XDeriveAnyClass we can derive any class. The deriving logic generates an instance declaration for
the type with no explicitly-defined methods or with all instances having a specific default implementation
given. These are used extensively with Generics when instances provide empty Minimal Annotations
which are all derived from generic logic.

A contrived example of a class with an empty minimal set might be the following:

{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveAnyClass #-}

class MinimalClass a where
const1 :: a -> Int
default const1 :: a -> Int
const1 _ = 1

const2 :: a -> Int
default const2 :: a -> Int
const2 _ = 2

data Example = Example
deriving (MinimalClass)

main :: IO ()
main = do
print (const1 Example)
print (const2 Example)

4.31 DuplicateRecordFields
GHC 8.0 introduced the DuplicateRecordFields extensions which loosens GHC’s restriction on records in
the same module with identical accessors. The precise type that is being projected into is now deferred
to the callsite.

{-# LANGUAGE DuplicateRecordFields #-}

data Person = Person { id :: Int }
data Animal = Animal { id :: Int }
data Vegetable = Vegetable { id :: Int }

test :: (Person, Animal, Vegetable)
test = (Person {id = 1}, Animal {id = 2}, Vegetable {id = 3})

119 LANGUAGE EXTENSIONS

Using just DuplicateRecordFields , projection is still not supported so the following will not work.

test :: (Int, Int, Int)
test = (id (Person 1), id (Animal 2), id (Animal 3))

4.32 OverloadedLabels
GHC 8.0 also introduced the OverloadedLabels extension which allows a limited form of polymorphism
over labels that share the same name.

To work with overloaded label types we also need to enable several language extensions that allow us
to use the promoted strings and multiparam typeclasses that underlay its implementation.

extract :: IsLabel "id" t => t
extract = #id

{-# LANGUAGE OverloadedLabels #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE DuplicateRecordFields #-}
{-# LANGUAGE ExistentialQuantification #-}

import GHC.Records (HasField(..)) -- Since base 4.10.0.0
import GHC.OverloadedLabels (IsLabel(..))

data S = MkS { foo :: Int }
data T x y z = forall b . MkT { foo :: y, bar :: b }

instance HasField x r a => IsLabel x (r -> a) where
fromLabel = getField

main :: IO ()
main = do
print (#foo (MkS 42))
print (#foo (MkT True False))

This is used in more advanced libraries like Selda which do object relational mapping between Haskell
datatype fields and database columns.

See:

• OverloadedRecordFields revived

4.33 CPP
The C++ preprocessor is the fallback whenever we really need to separate out logic that has to span
multiple versions of GHC and language changes while maintaining backwards compatibility. It can dispatch
on the version of GHC being used to compile a module.

http://www.well-typed.com/blog/2015/03/overloadedrecordfields-revived/

LANGUAGE EXTENSIONS 120

{-# LANGUAGE CPP #-}

#if (__GLASGOW_HASKELL__ > 710)
-- Imports for GHC 7.10.x
#else
-- Imports for other GHC
#endif

It can also demarcate code based on the operating system compiled on.

{-# LANGUAGE CPP #-}

#ifdef OS_Linux
-- Linux specific logic

#else
ifdef OS_Win32

-- Windows specific logic
else
ifdef OS_Mac

-- Mac specific logic
else

-- Other operating systems
endif
endif
#endif

For another example, it can distinguish the version of the base library used.

#if !MIN_VERSION_base(4,6,0)
-- Base specific logic

#endif

One can also use the CPP extension to emit Haskell source at compile-time. This is used in some
libraries which have massive boilerplate obligations. Of course, this can be abused quite easily and doing
this sort of compile-time string-munging should be a last resort.

4.34 TypeApplications
The type system extension TypeApplications allows you to use explicit annotations for subexpressions.
For example if you have a subexpression which has the inferred type a -> b -> a you can name the types
of a and b by explicitly stating @Int @Bool to assign a to Int and b to Bool . This is particularly
useful when working with typeclasses where type inference cannot deduce the types of all subexpressions
from the toplevel signature and results in an overly specific default. This is quite common when working
with roundtrips of read and show . For example:

121 LANGUAGE EXTENSIONS

{-# LANGUAGE TypeApplications #-}

import Data.Proxy

a :: Proxy Int
a = Proxy @Int

b :: String
b = show (read @Int "42")

4.35 DerivingVia
DerivingVia is an extension of GeneralizedNewtypeDeriving . Just as newtype deriving allows us to derive

instances in terms of instances for the underlying representation of the newtype, DerivingVia allows
deriving instances by specifying a custom type which has a runtime representation equal to the desired
behavior we’re deriving the instance for. The derived instance can then be coerced to behave as if it
were operating over the given type. This is a powerful new mechanism that allows us to derive many
typeclasses in terms of other typeclasses.

{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE KindSignatures #-}

import Control.Applicative
import Data.Functor.Const (Const (..))
import GHC.Exts (Any)

-- Deriving Eq in terms of Const functor
newtype Age = MkAge Int
deriving
(Eq)
via Const Int Any

-- Deriving Num across a nested functor
newtype FNum f a = FNum (f a)
deriving stock (Functor)
deriving newtype (Applicative)

instance (Applicative f, Num a) => Num (FNum f a) where
(+) = liftA2 (+)
(-) = liftA2 (-)
(*) = liftA2 (*)
abs = fmap abs
signum = fmap signum
fromInteger = FNum . pure . fromInteger

newtype Example a b = Example (Either a b)
deriving stock (Show, Functor)

LANGUAGE EXTENSIONS 122

deriving newtype (Applicative)
deriving (Num) via FNum (Either a) b

a :: Example Integer Integer
a = Example (Left 1)

b :: Example Integer Integer
b = Example (Right 1)

example :: IO ()
example = do
print (a + a)
print (a + b)
print (b + b)

4.36 DerivingStrategies
Deriving has proven a powerful mechanism to add typeclass instances and as such there have been a
variety of bifurcations in its use. Since GHC 8.2 there are now four different algorithms that can be used
to derive typeclass instances. These are enabled by different extensions and now have specific syntax for
invoking each algorithm specifically. Turning on DerivingStrategies allows you to disambiguate which
algorithm GHC should use for individual class derivations.

• stock - Standard GHC builtin deriving (i.e. Eq , Ord , Show)
• anyclass - Deriving via minimal annotations with DeriveAnyClass.
• newtype - Deriving with [GeneralizedNewtypeDeriving].
• via - Deriving with DerivingVia.

These can be stacked and combined on top of a data or newtype declaration.

newtype Example = Example Int
deriving stock (Read, Show)
deriving newtype (Num, Floating)
deriving anyclass (ToJSON, FromJSON, ToSQL, FromSQL)
deriving (Eq) via (Const Int Any)

4.37 Historical Extensions
Several language extensions have either been absorbed into the core language or become deprecated in
favor of others. Others are just considered misfeatures.

• Rank2Types - Rank2Types has been subsumed by RankNTypes

• XPolymorphicComponents - Was an implementation detail of higher-rank polymorphism that no longer
exists.

• NPlusKPatterns - These were largely considered an ugly edge-case of pattern matching language that
was best removed.

• TraditionalRecordSyntax - Traditional record syntax was an extension to the Haskell 98 specification
for what we now consider standard record syntax.

123 LANGUAGE EXTENSIONS

• OverlappingInstances - Subsumed by explicit OVERLAPPING pragmas.
• IncoherentInstances - Subsumed by explicit INCOHERENT pragmas.
• NullaryTypeClasses - Subsumed by explicit Multiparameter Typeclasses with no parameters.
• TypeInType - Is deprecated in favour of the combination of PolyKinds and DataKinds and extensions

to the GHC typesystem after GHC 8.0.

LANGUAGE EXTENSIONS 124

Chapter 5

Type Class Extensions

Typeclasses are the bread and butter of abstractions in Haskell, and even out of the box in Haskell
98 they are quite powerful. However classes have grown quite a few extensions, additional syntax and
enhancements over the years to augment their utility.

-- +-----+------------------ Typeclass Context
-- | | +------ Typeclass Head
-- | | |
-- ^^^^^^^^^^^^^^^ ^^^^^^^^^^^
class (Ctx1 a, Ctx2 b) => MyClass a b where
method1 :: a -> b

-- |
-- +------------------------ Typeclass Method

5.1 Standard Hierarchy

In the course of writing Haskell there are seven core instances you will use and derive most frequently.
Each of them are lawful classes with several equations associated with their methods.

• Semigroup

• Monoid
• Functor
• Applicative

• Monad
• Foldable
• Traversable

125

TYPE CLASS EXTENSIONS 126

5.2 Instance Search
Whenever a typeclass method is invoked at a callsite, GHC will perform an instance search over all available
instances defined for the given typeclass associated with the method. This instance search is quite similar
to backward chaining in logic programming languages. The search is performed during compilation after
all types in all modules are known and is performed globally across all modules and all packages available
to be linked. The instance search can either result in no instances, a single instance or multiple instances
which satisfy the conditions of the call site.

5.3 Orphan Instances
Normally typeclass definitions are restricted to be defined in one of two places:

1. In the same module as the declaration of the datatype in the instance head.
2. In the same module as the class declaration.

These two restrictions restrict the instance search space to a system where a solution (if it exists) can
always be found. If we allowed instances to be defined in any modules then we could potentially have
multiple class instances defined in multiple modules and the search would be ambiguous.

This restriction can however be disabled with the -fno-warn-orphans flag.

{-# OPTIONS_GHC -fno-warn-orphans #-}

This will allow you to define orphan instances in the current module. But beware this will make the
instance search contingent on your import list and may result in clashes in your codebase where the linker
will fail because there are multiple modules which define the same instance head.

When used appropriately this can be the way to route around the fact that upstream modules may
define datatypes that you use, but they have not defined the instances for other downstream libraries that
you also use. You can then write these instances for your codebase without modifying either upstream
library.

127 TYPE CLASS EXTENSIONS

5.4 Minimal Annotations
In the presence of default implementations for typeclass methods, there may be several ways to implement
a typeclass. For instance Eq is entirely defined by either defining when two values are equal or not equal by
implying taking the negation of the other. We can define equality in terms of non-equality and vice-versa.

class Eq a where
(==), (/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x == y)

Before 7.6.1 there was no way to specify what was the “minimal” definition required to implement a
typeclass

class Eq a where
(==), (/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x == y)
{-# MINIMAL (==) #-}
{-# MINIMAL (/=) #-}

Minimal pragmas are boolean expressions. For instance, with | as logical OR , either definition of the
above functions must be defined. Comma indicates logical AND where both definitions must be defined.

{-# MINIMAL (==) | (/=) #-} -- Either (==) or (/=)
{-# MINIMAL (==) , (/=) #-} -- Both (==) and (/=)

Compiling the -Wmissing-methods will warn when an instance is defined that does not meet the minimal
criterion.

5.5 TypeSynonymInstances
Normally type class definitions are restricted to being defined only over fully expanded types with all type
synonym indirections removed. Type synonyms introduce a “naming indirection” that can be included
in the instance search to allow you to write synonym instances for multiple synonyms which expand to
concrete types.

This is used quite often in modern Haskell.

{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}

type IntList = [Int]

class MyClass a

TYPE CLASS EXTENSIONS 128

-- Without type synonym instances, we're forced to manually expand out type
-- synonyms in the typeclass head.
instance MyClass [Int]

-- With it GHC will do this for us automatically. Type synonyms still need to
-- be fully applied.
instance MyClass IntList

5.6 FlexibleInstances
Normally the head of a typeclass instance must contain only a type constructor applied to any number
of type variables. There can be no nesting of other constructors or non-type variables in the head. The
FlexibleInstances extension loosens this restriction to allow arbitrary nesting and non-type variables to

be mentioned in the head definition. This extension also implicitly enables TypeSynonymInstances .

{-# LANGUAGE FlexibleInstances #-}

class MyClass a

-- Without flexible instances, all instance heads must be type variable. The
-- following would be legal.
instance MyClass (Maybe a)

-- With flexible instances, typeclass heads can be arbitrary nested types. The
-- following would be forbidden without it.
instance MyClass (Maybe Int)

5.7 FlexibleContexts
Just as with instances, contexts normally are also constrained to consist entirely of constraints where a
class is applied to just type variables. The FlexibleContexts extension lifts this restriction and allows
any type of type variable and nesting to occur the class constraint head. There is however still a global
restriction that all class hierarchies must not contain cycles.

{-# LANGUAGE FlexibleContexts #-}

class MyClass a

-- Without flexible contexts, all contexts must be type variable. The
-- following would be legal.
instance (MyClass a) => MyClass (Either a b)

-- With flexible contexts, typeclass contexts can be arbitrary nested types. The
-- following would be forbidden without it.
instance (MyClass (Maybe a)) => MyClass (Either a b)

129 TYPE CLASS EXTENSIONS

5.8 OverlappingInstances
Typeclasses are normally globally coherent, there is only ever one instance that can be resolved for a type
unambiguously at any call site in the program. There are however extensions to loosen this restriction
and perform more manual direction of the instance search.

Overlapping instances loosens the coherent condition (there can be multiple instances) but introduces
a criterion that it will resolve to the most specific one.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE OverlappingInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
fn :: (a,b)

instance MyClass Int b where
fn = error "b"

instance MyClass a Int where
fn = error "a"

instance MyClass Int Int where
fn = error "c"

example :: (Int, Int)
example = fn

Historically enabling on the module-level was not the best idea, since generally we define multiple
classes in a module only a subset of which may be incoherent. As of GHC 7.10 we now have the capacity
to just annotate instances with the OVERLAPPING and INCOHERENT inline pragmas.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
fn :: (a,b)

instance {-# OVERLAPPING #-} MyClass Int b where
fn = error "b"

instance {-# OVERLAPPING #-} MyClass a Int where
fn = error "a"

instance {-# OVERLAPPING #-} MyClass Int Int where
fn = error "c"

example :: (Int, Int)
example = fn

TYPE CLASS EXTENSIONS 130

5.9 IncoherentInstances
Incoherent instances loosens the restriction that there be only one specific instance, it will be chosen
based on a more complex search procedure which tries to identify a prime instance based on information
incorporated form OVERLAPPING pragmas on instances in the search tree. Unless one is doing very advanced
type-level programming use class constraints, this is usually a poor design decision and a sign to rethink
the class hierarchy.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE IncoherentInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
fn :: (a,b)

instance MyClass Int b where
fn = error "a"

instance MyClass a Int where
fn = error "b"

example :: (Int, Int)
example = fn

An example with INCOHERENT annotations:

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
fn :: (a,b)

instance {-# INCOHERENT #-} MyClass a Int where
fn = error "general"

instance {-# INCOHERENT #-} MyClass Int Int where
fn = error "specific"

example :: (Int, Int)
example = fn

Chapter 6

Laziness

Haskell is a unique language that explores an alternative evaluation model called lazy evaluation. Lazy
evaluation implies that expressions will be evaluated only when needed. In truth, this evaluation may
even be indefinitely deferred. Consider the example in Haskell of defining an infinite list:

�> mkInfinite n = n : mkInfinite n
�> take 5 $ mkInfinite 4
[4,4,4,4,4]

The primary advantage of lazy evaluation in the large is that algorithms that operate over both
unbounded and bounded data structures can inhabit the same type signatures and be composed without
any additional need to restructure their logic or force intermediate computations.

Still, it’s important to recognize that this is another subject on which much ink has been spilled. In
fact, there is an ongoing discussion in the land of Haskell about the compromises between lazy and strict
evaluation, and there are nuanced arguments for having either paradigm be the default.

Haskell takes a hybrid approach where it allows strict evaluation when needed while it uses laziness
by default. Needless to say, we can always find examples where strict evaluation exhibits worse behavior
than lazy evaluation and vice versa. These days Haskell can be both as lazy or as strict as you like, giving
you options for however you prefer to program.

Languages that attempt to bolt laziness on to a strict evaluation model often bifurcate classes of
algorithms into ones that are hand-adjusted to consume unbounded structures and those which operate
over bounded structures. In strict languages, mixing and matching between lazy vs. strict processing
often necessitates manifesting large intermediate structures in memory when such composition would
“just work” in a lazy language.

By virtue of Haskell being the only language to actually explore this point in the design space, knowl-
edge about lazy evaluation is not widely absorbed into the collective programmer consciousness and can
often be non-intuitive to the novice. Some time is often needed to fully grok how lazy evaluation works

6.1 Strictness
For a more strict definition of strictnees, consider that there are several evaluation models for the lambda
calculus:

• Strict - Evaluation is said to be strict if all arguments are evaluated before the body of a function.
• Non-strict - Evaluation is non-strict if the arguments are not necessarily evaluated before entering

the body of a function.

These ideas give rise to several models, Haskell itself uses the call-by-need model.

131

LAZINESS 132

Model Strictness Description
Call-by-value Strict Arguments evaluated before function entered
Call-by-name Non-strict Arguments passed unevaluated
Call-by-need Non-strict Arguments passed unevaluated but an expression is only evaluated once

6.2 Seq and WHNF
On the subject of laziness and evaluation, we have names for how fully evaluated an expression is. A
term is said to be in weak head normal-form if the outermost constructor or lambda expression cannot be
reduced further. A term is said to be in normal form if it is fully evaluated and all sub-expressions and
thunks contained within are evaluated.

-- In Normal Form
42
(2, "foo")
\x -> x + 1

-- Not in Normal Form
1 + 2
(\x -> x + 1) 2
"foo" ++ "bar"
(1 + 1, "foo")

-- In Weak Head Normal Form
(1 + 1, "foo")
\x -> 2 + 2
'f' : ("oo" ++ "bar")

-- Not In Weak Head Normal Form
1 + 1
(\x -> x + 1) 2
"foo" ++ "bar"

In Haskell, normal evaluation only occurs at the outer constructor of case-statements in Core. If we
pattern match on a list, we don’t implicitly force all values in the list. An element in a data structure
is only evaluated up to the outermost constructor. For example, to evaluate the length of a list we need
only scrutinize the outer Cons constructors without regard for their inner values:

�: length [undefined, 1]
2

�: head [undefined, 1]
Prelude.undefined

�: snd (undefined, 1)
1

�: fst (undefined, 1)
Prelude.undefined

133 LAZINESS

For example, in a lazy language the following program terminates even though it contains diverging
terms.

ignore :: a -> Int
ignore x = 0

loop :: a
loop = loop

main :: IO ()
main = print $ ignore loop

In a strict language like OCaml (ignoring its suspensions for the moment), the same program diverges.

let ignore x = 0;;
let rec loop a = loop a;;

print_int (ignore (loop ()));

6.3 Thunks
In Haskell a thunk is created to stand for an unevaluated computation. Evaluation of a thunk is called
forcing the thunk. The result is an update, a referentially transparent effect, which replaces the memory
representation of the thunk with the computed value. The fundamental idea is that a thunk is only updated
once (although it may be forced simultaneously in a multi-threaded environment) and its resulting value
is shared when referenced subsequently.

The GHCi command :sprint can be used to introspect the state of unevaluated thunks inside an
expression without forcing evaluation. For instance:

�: let a = [1..] :: [Integer]
�: let b = map (+ 1) a

�: :sprint a
a = _
�: :sprint b
b = _
�: a !! 4
5
�: :sprint a
a = 1 : 2 : 3 : 4 : 5 : _
�: b !! 10
12
�: :sprint a
a = 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : 11 : _
�: :sprint b
b = _ : _ : _ : _ : _ : _ : _ : _ : _ : _ : 12 : _

LAZINESS 134

While a thunk is being computed its memory representation is replaced with a special form known as
blackhole which indicates that computation is ongoing and allows for a short circuit when a computation
might depend on itself to complete.

The seq function introduces an artificial dependence on the evaluation of order of two terms by
requiring that the first argument be evaluated to WHNF before the evaluation of the second. The imple-
mentation of the seq function is an implementation detail of GHC.

seq :: a -> b -> b

� `seq` a = �
a `seq` b = b

For one example where laziness can bite you, the infamous foldl is well-known to leak space when
used carelessly and without several compiler optimizations applied. The strict foldl’ variant uses seq to
overcome this.

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' _ z [] = z
foldl' f z (x:xs) = let z' = f z x in z' `seq` foldl' f z' xs

In practice, a combination between the strictness analyzer and the inliner on -O2 will ensure that the
strict variant of foldl is used whenever the function is inlinable at call site so manually using foldl' is
most often not required.

Of important note is that GHCi runs without any optimizations applied so the same program that
performs poorly in GHCi may not have the same performance characteristics when compiled with GHC.

6.4 BangPatterns
The extension BangPatterns allows an alternative syntax to force arguments to functions to be wrapped in
seq. A bang operator on an argument forces its evaluation to weak head normal form before performing
the pattern match. This can be used to keep specific arguments evaluated throughout recursion instead
of creating a giant chain of thunks.

{-# LANGUAGE BangPatterns #-}

sum :: Num a => [a] -> a
sum = go 0
where

go !acc (x:xs) = go (acc + x) xs
go acc [] = acc

135 LAZINESS

This is desugared into code effectively equivalent to the following:

sum :: Num a => [a] -> a
sum = go 0
where
go acc _ | acc `seq` False = undefined
go acc (x:xs) = go (acc + x) xs
go acc [] = acc

Function application to seq’d arguments is common enough that it has a special operator.

($!) :: (a -> b) -> a -> b
f $! x = let !vx = x in f vx

6.5 StrictData
As of GHC 8.0 strictness annotations can be applied to all definitions in a module automatically. In
previous versions to make definitions strict it was necessary to use explicit syntactic annotations at call
sites.

Enabling StrictData makes constructor fields strict by default on any module where the pragma is
enabled:

{-# LANGUAGE StrictData #-}

data Employee = Employee
{ name :: T.Text
, age :: Int
}

Is equivalent to:

data Employee = Employee
{ name :: !T.Text
, age :: !Int
}

6.6 Strict
Strict implies -XStrictData and extends strictness annotations to all arguments of functions.

f x y = x + y

LAZINESS 136

Is equivalent to the following function declaration with explicit bang patterns:

f !x !y = x + y

On a module-level this effectively makes Haskell a call-by-value language with some caveats. All
arguments to functions are now explicitly evaluated and all data in constructors within this module are
in head normal form by construction.

6.7 Deepseq
There are often times when for performance reasons we need to deeply evaluate a data structure to normal
form leaving no terms unevaluated. The deepseq library performs this task.

The typeclass NFData (Normal Form Data) allows us to seq all elements of a structure across any
subtypes which themselves implement NFData.

class NFData a where
rnf :: a -> ()
rnf a = a `seq` ()

deepseq :: NFData a => a -> b -> b
($!!) :: (NFData a) => (a -> b) -> a -> b

instance NFData Int
instance NFData (a -> b)

instance NFData a => NFData (Maybe a) where
rnf Nothing = ()
rnf (Just x) = rnf x

instance NFData a => NFData [a] where
rnf [] = ()
rnf (x:xs) = rnf x `seq` rnf xs

[1, undefined] `seq` ()
-- ()

[1, undefined] `deepseq` ()
-- Prelude.undefined

To force a data structure itself to be fully evaluated we share the same argument in both positions of
deepseq.

137 LAZINESS

force :: NFData a => a -> a
force x = x `deepseq` x

6.8 Irrefutable Patterns
A lazy pattern doesn’t require a match on the outer constructor, instead it lazily calls the accessors of
the values as needed. In the presence of a bottom, we fail at the usage site instead of the outer pattern
match.

f :: (a, b) -> Int
f (a,b) = const 1 a

g :: (a, b) -> Int
g ~(a,b) = const 1 a

-- �: f undefined
-- *** Exception: Prelude.undefined
-- �: g undefined
-- 1

j :: Maybe t -> t
j ~(Just x) = x

k :: Maybe t -> t
k (Just x) = x

-- �: j Nothing
-- *** Exception: src/05-laziness/lazy_patterns.hs:15:1-15: Irrefutable pattern failed for pattern (Just x)
--
-- �: k Nothing
-- *** Exception: src/05-laziness/lazy_patterns.hs:18:1-14: Non-exhaustive patterns in function k

6.9 The Debate
Laziness is a controversial design decision in Haskell. It is difficult to write production Haskell code that
operates in constant memory without some insight into the evaluation model and the runtime. A lot of
industrial codebases have a policy of marking all constructors as strict by default or enabling StrictData
to prevent space leaks. If Haskell were being designed from scratch it probably would not choose laziness
as the default model. Future implementations of Haskell compilers would not choose this point in the
design space if given the option of breaking with the language specification.

There is a lot of fear, uncertainty and doubt spread about lazy evaluation that unfortunately loses
the forest for the trees and ignores 30 years of advanced research on the type system. In industrial
programming a lot of software is sold on the meme of being of fast instead of being correct, and lazy
evaluation is an intellectually easy talking point about these upside-down priorities. Nevertheless the
colloquial perception of laziness being “evil” is a meme that will continue to persist regardless of any
underlying reality because software is intrinsically a social process.

LAZINESS 138

Chapter 7

Prelude

7.1 What to Avoid?
Haskell being a 30 year old language has witnessed several revolutions in the way we structure and compose
functional programs. Yet as a result several portions of the Prelude still reflect old schools of thought that
simply can’t be removed without breaking significant parts of the ecosystem.

Currently it really only exists in folklore which parts to use and which not to use, although this is a
topic that almost all introductory books don’t mention and instead make extensive use of the Prelude for
simplicity’s sake.

The short version of the advice on the Prelude is:

• Avoid String.
• Use fmap instead of map .
• Use Foldable and Traversable instead of the Control.Monad, and Data.List versions of traversals.
• Avoid partial functions like head and read or use their total variants.
• Avoid exceptions, use ExceptT or Either instead.
• Avoid boolean blind functions.

The instances of Foldable for the list type often conflict with the monomorphic versions in the Prelude
which are left in for historical reasons. So oftentimes it is desirable to explicitly mask these functions from
implicit import and force the use of Foldable and Traversable instead.

Of course oftentimes one wishes to only use the Prelude explicitly and one can explicitly import it
qualified and use the pieces as desired without the implicit import of the whole namespace.

import qualified Prelude as P

7.2 What Should be in Prelude
To get work done on industrial projects you probably need the following libraries:

• text
• containers
• unordered-containers
• mtl
• transformers
• vector
• filepath

• directory

139

PRELUDE 140

• process

• bytestring

• optparse-applicative

• unix
• aeson

7.3 Custom Preludes
The default Prelude can be disabled in its entirety by twiddling the -XNoImplicitPrelude flag which allows
us to replace the default import entirely with a custom prelude. Many industrial projects will roll their
own Prologue.hs module which replaces the legacy prelude.

{-# LANGUAGE NoImplicitPrelude #-}

For example if we wanted to build up a custom project prelude we could construct a Prologue module
and dump the relevant namespaces we want from base into our custom export list. Using the module
reexport feature allows us to create an Exports namespace which contains our Prelude’s symbols. Every
subsequent module in our project will then have import Prologue as the first import.

module Prologue (
module Exports,

) where

import Data.Int as Exports
import Data.Tuple as Exports
import Data.Maybe as Exports
import Data.String as Exports
import Data.Foldable as Exports
import Data.Traversable as Exports

import Control.Monad.Trans.Except
as Exports
(ExceptT(ExceptT), Except, except, runExcept, runExceptT,
mapExcept, mapExceptT, withExcept, withExceptT)

7.4 Preludes
There are many approaches to custom preludes. The most widely used ones are all available on Hackage.

• base-prelude
• rio
• protolude
• relude
• foundation
• rebase
• classy-prelude
• basic-prelude

http://hackage.haskell.org/package/base-prelude
http://hackage.haskell.org/package/rio
http://hackage.haskell.org/package/protolude
http://hackage.haskell.org/package/relude
http://hackage.haskell.org/package/foundation
http://hackage.haskell.org/package/rebase
http://hackage.haskell.org/package/classy-prelude
http://hackage.haskell.org/package/basic-prelude

141 PRELUDE

Different preludes take different approaches to defining what the Haskell standard library should be.
Some are interoperable with existing code and others require an “all-in” approach that creates an ecosystem
around it. Some projects are more community efforts and others are developed by consulting companies
or industrial users wishing to standardise their commercial code.

In Modern Haskell there are many different perspectives on Prelude design and the degree to which
more advanced ideas should be used. Which one is right for you is a matter of personal preference and
constraints in your company.

7.5 Protolude
Protolude is a minimalist Prelude which provides many sensible defaults for writing modern Haskell and
is compatible with existing code.

{-# LANGUAGE NoImplicitPrelude #-}

import Protolude

Protolude is one of the more conservative preludes and is developed by the author of this document.
See:

• Protolude Hackage
• Protolude Github

7.6 Partial Functions
A partial function is a function which doesn’t terminate and yield a value for all given inputs. Conversely
a total function terminates and is always defined for all inputs. As mentioned previously, certain historical
parts of the Prelude are full of partial functions.

The difference between partial and total functions is the compiler can’t reason about the runtime safety
of partial functions purely from the information specified in the language and as such the proof of safety
is left to the user to guarantee. They are safe to use in the case where the user can guarantee that invalid
inputs cannot occur, but like any unchecked property its safety or not-safety is going to depend on the
diligence of the programmer. This very much goes against the overall philosophy of Haskell and as such
they are discouraged when not necessary.

head :: [a] -> a
read :: Read a => String -> a
(!!) :: [a] -> Int -> a

A list of partial functions in the default prelude:
Partial for all inputs

• error
• undefined
• fail – For Monad IO

Partial for empty lists

• head

http://hackage.haskell.org/package/protolude
https://www.github.com/protolude/protolude

PRELUDE 142

• init
• tail
• last
• foldr1
• foldl1
• cycle

• maximum
• minimum

Partial for Nothing

• fromJust

Partial for invalid strings lists

• read

Partial for infinite lists

• sum
• product
• reverse

Partial for negative or unbounded numbers

• (!)
• (!!)
• toEnum
• genericIndex

7.7 Replacing Partiality
The Prelude has total variants of the historical partial functions (e.g. Text.Read.readMaybe) in some cases,
but often these are found in the various replacement preludes

The total versions provided fall into three cases:

• May - return Nothing when the function is not defined for the inputs
• Def - provide a default value when the function is not defined for the inputs
• Note - call error with a custom error message when the function is not defined for the inputs. This

is not safe, but slightly easier to debug!

-- Total
headMay :: [a] -> Maybe a
readMay :: Read a => String -> Maybe a
atMay :: [a] -> Int -> Maybe a

-- Total
headDef :: a -> [a] -> a
readDef :: Read a => a -> String -> a
atDef :: a -> [a] -> Int -> a

-- Partial
headNote :: String -> [a] -> a
readNote :: Read a => String -> String -> a
atNote :: String -> [a] -> Int -> a

143 PRELUDE

7.8 Boolean Blindness
Boolean blindness is a common problem found in many programming languages. Consider the following
two definitions which deconstruct a Maybe value into a boolean. Is there anything wrong with the
definitions and below and why is this not caught in the type system?

data Bool = True | False

isNotJust :: Maybe a -> Bool
isNotJust (Just x) = True -- ???
isNotJust Nothing = False

isJust :: Maybe a -> Bool
isJust (Just x) = True
isJust Nothing = False

The problem with the Bool type is that there is effectively no difference between True and False at
the type level. A proposition taking a value to a Bool takes any information given and destroys it. To
reason about the behavior we have to trace the provenance of the proposition we’re getting the boolean
answer from, and this introduces a whole slew of possibilities for misinterpretation. In the worst case, the
only way to reason about safe and unsafe use of a function is by trusting that a predicate’s lexical name
reflects its provenance!

For instance, testing some proposition over a Bool value representing whether the branch can perform
the computation safely in the presence of a null is subject to accidental interchange. Consider that in a
language like C or Python testing whether a value is null is indistinguishable to the language from testing
whether the value is not null. Which of these programs encodes safe usage and which segfaults?

This one?
if p(x):

use x
elif not p(x):

don't use x

Or this one?
if p(x):

don't use x
elif not p(x):

use x

From inspection we can’t tell without knowing how p is defined, the compiler can’t distinguish the two
either and thus the language won’t save us if we happen to mix them up. Instead of making invalid states
unrepresentable we’ve made the invalid state indistinguishable from the valid one!

The more desirable practice is to match on terms which explicitly witness the proposition as a type
(often in a sum type) and won’t typecheck otherwise.

case x of
Just a -> use x
Nothing -> don't use x

PRELUDE 144

-- not ideal
case p x of
True -> use x
False -> don't use x

-- not ideal
if p x
then use x
else don't use x

To be fair though, many popular languages completely lack the notion of sum types (the source of
many woes in my opinion) and only have product types, so this type of reasoning sometimes has no direct
equivalence for those not familiar with ML family languages.

In Haskell, the Prelude provides functions like isJust and fromJust both of which can be used to
subvert this kind of reasoning and make it easy to introduce bugs and should often be avoided.

7.9 Foldable / Traversable
If coming from an imperative background retraining oneself to think about iteration over lists in terms of
maps, folds, and scans can be challenging.

Prelude.foldl :: (a -> b -> a) -> a -> [b] -> a
Prelude.foldr :: (a -> b -> b) -> b -> [a] -> b

-- pseudocode
foldr f z [a...] = f a (f b (... (f y z) ...))
foldl f z [a...] = f ... (f (f z a) b) ... y

For a concrete example consider the simple arithmetic sequence over the binary operator (+) :

-- foldr (+) 1 [2..]
(2 + (3 + (4 + (5 + ...))))

-- foldl (+) 1 [2..]
((((1 + 2) + 3) + 4) + ...)

Foldable and Traversable are the general interface for all traversals and folds of any data structure
which is parameterized over its element type (List, Map, Set, Maybe, …). These two classes are used
everywhere in modern Haskell and are extremely important.

class Foldable t where
fold :: Monoid m => t m -> m

145 PRELUDE

foldMap :: Monoid m => (a -> m) -> t a -> m
foldr :: (a -> b -> b) -> b -> t a -> b
foldr' :: (a -> b -> b) -> b -> t a -> b
foldl :: (b -> a -> b) -> b -> t a -> b
foldl' :: (b -> a -> b) -> b -> t a -> b
foldr1 :: (a -> a -> a) -> t a -> a
foldl1 :: (a -> a -> a) -> t a -> a
toList :: t a -> [a]
null :: t a -> Bool
length :: t a -> Int
elem :: Eq a => a -> t a -> Bool
maximum :: Ord a => t a -> a
minimum :: Ord a => t a -> a
sum :: Num a => t a -> a
product :: Num a => t a -> a

A foldable instance allows us to apply functions to data types of monoidal values that collapse the
structure using some logic over mappend .

A traversable instance allows us to apply functions to data types that walk the structure left-to-right
within an applicative context.

class (Functor f, Foldable f) => Traversable f where
traverse :: Applicative g => (a -> g b) -> f a -> g (f b)

class Foldable f where
foldMap :: Monoid m => (a -> m) -> f a -> m

The foldMap function is extremely general and non-intuitively many of the monomorphic list folds can
themselves be written in terms of this single polymorphic function.

foldMap takes a function of values to a monoidal quantity, a functor over the values and collapses the
functor into the monoid. For instance for the trivial Sum monoid:

�: foldMap Sum [1..10]
Sum {getSum = 55}

For instance if we wanted to map a list of some abstract element types into a hashtable of elements
based on pattern matching we could use it.

import Data.Foldable
import qualified Data.Map as Map

data Elt
= Elt Int Double
| Nil

foo :: [Elt] -> Map.Map Int Double

PRELUDE 146

foo = foldMap go
where

go (Elt x y) = Map.singleton x y
go Nil = Map.empty

The full Foldable class (with all default implementations) contains a variety of derived functions which
themselves can be written in terms of foldMap and Endo .

newtype Endo a = Endo {appEndo :: a -> a}

instance Monoid (Endo a) where
mempty = Endo id
Endo f `mappend` Endo g = Endo (f . g)

For example:

foldr :: (a -> b -> b) -> b -> t a -> b
foldr f z t = appEndo (foldMap (Endo . f) t) z

Most of the operations over lists can be generalized in terms of combinations of Foldable and Traversable
to derive more general functions that work over all data structures implementing Foldable.

Data.Foldable.elem :: (Eq a, Foldable t) => a -> t a -> Bool
Data.Foldable.sum :: (Num a, Foldable t) => t a -> a
Data.Foldable.minimum :: (Ord a, Foldable t) => t a -> a
Data.Traversable.mapM :: (Monad m, Traversable t) => (a -> m b) -> t a -> m (t b)

Unfortunately for historical reasons the names exported by Foldable quite often conflict with ones
defined in the Prelude, either import them qualified or just disable the Prelude. The operations in the
Foldable class all specialize to the same and behave the same as the ones in Prelude for List types.

import Control.Applicative
import Control.Monad.Identity (runIdentity)
import Data.Foldable
import Data.Monoid
import Data.Traversable
import Prelude hiding (foldr, mapM_)

-- Rose Tree
data Tree a = Node a [Tree a] deriving (Show)

instance Functor Tree where
fmap f (Node x ts) = Node (f x) (fmap (fmap f) ts)

147 PRELUDE

instance Traversable Tree where
traverse f (Node x ts) = Node <$> f x <*> traverse (traverse f) ts

instance Foldable Tree where
foldMap f (Node x ts) = f x `mappend` foldMap (foldMap f) ts

tree :: Tree Integer
tree = Node 1 [Node 1 [], Node 2 [], Node 3 []]

example1 :: IO ()
example1 = mapM_ print tree

example2 :: Integer
example2 = foldr (+) 0 tree

example3 :: Maybe (Tree Integer)
example3 = traverse (\x -> if x > 2 then Just x else Nothing) tree

example4 :: Tree Integer
example4 = runIdentity $ traverse (\x -> pure (x + 1)) tree

The instances we defined above can also be automatically derived by GHC using several language
extensions. The automatic instances are identical to the hand-written versions above.

{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveTraversable #-}

data Tree a = Node a [Tree a]
deriving (Show, Functor, Foldable, Traversable)

PRELUDE 148

Chapter 8

Strings

The string situation in Haskell is a sad affair. The default String type is defined as linked list of point-
ers to characters which is an extremely pathological and inefficient way of representing textual data.
Unfortunately for historical reasons large portions of GHC and Base depend on String.

The String problem is intrinsically linked to the fact that the default GHC Prelude provides a set of
broken defaults that are difficult to change because GHC and the entire ecosystem historically depend on
it. There are however high performance string libraries that can swapped in for the broken String type
and we will discuss some ways of working with high-performance and memory efficient replacements.

8.1 String
The default Haskell string type is implemented as a naive linked list of characters, this is hilariously
terrible for most purposes but no one knows how to fix it without rewriting large portions of all code that
exists, and simply nobody wants to commit the time to fix it. So it remains broken, likely forever.

type String = [Char]

However, fear not as there are are two replacement libraries for processing textual data: text and
bytestring .

• text - Used for handling unicode data.
• bytestring - Used for handling ASCII data that needs to interchange with C code or network

protocols.

For each of these there are two variants for both text and bytestring.

• lazy - Lazy text objects are encoded as lazy lists of strict chunks of bytes.
• strict - Byte vectors are encoded as strict Word8 arrays of bytes or code points

Giving rise to the Cartesian product of the four common string types:

Variant Module
strict text Data.Text
lazy text Data.Text.Lazy
strict bytestring Data.ByteString
lazy bytestring Data.ByteString.Lazy

149

STRINGS 150

8.2 String Conversions
Conversions between strings types are done with several functions across the bytestring and text libraries.
The mapping between text and bytestring is inherently lossy so there is some degree of freedom in choosing
the encoding. We’ll just consider utf-8 for simplicity.

Table 8.2: From : left column, To : top row

Data.Text Data.Text.Lazy Data.ByteString Data.ByteString.Lazy
Data.Text id fromStrict encodeUtf8 encodeUtf8
Data.Text.Lazy toStrict id encodeUtf8 encodeUtf8
Data.ByteString decodeUtf8 decodeUtf8 id fromStrict
Data.ByteString.Lazy decodeUtf8 decodeUtf8 toStrict id

Be careful with the functions (decodeUtf8 , decodeUtf16LE , etc.) as they are partial and will throw
errors if the byte array given does not contain unicode code points. Instead use one of the following
functions which will allow you to explicitly handle the error case:

decodeUtf8' :: ByteString -> Either UnicodeException Text
decodeUtf8With :: OnDecodeError -> ByteString -> Text

8.3 OverloadedStrings
With the -XOverloadedStrings extension string literals can be overloaded without the need for explicit
packing and can be written as string literals in the Haskell source and overloaded via the typeclass
IsString . Sometimes this is desirable.

class IsString a where
fromString :: String -> a

For instance:

�: :type "foo"
"foo" :: [Char]

�: :set -XOverloadedStrings

�: :type "foo"
"foo" :: IsString a => a

We can also derive IsString for newtypes using GeneralizedNewtypeDeriving , although much of the safety
of the newtype is then lost if it is used interchangeable with other strings.

151 STRINGS

newtype Cat = Cat Text
deriving (IsString)

fluffy :: Cat
fluffy = "Fluffy"

Import Conventions
Since there are so many modules that provide string datatypes, and these modules are used ubiq-

uitously, some conventions are often adopted to import these modules as specific agreed-upon qualified
names. In many Haskell projects you will see the following social conventions used for distinguish text
types.

For datatypes:

import qualified Data.Text as T
import qualified Data.Text.Lazy as TL
import qualified Data.ByteString as BS
import qualified Data.ByteString.Lazy as BL
import qualified Data.ByteString.Char8 as C
import qualified Data.ByteString.Lazy.Char8 as CL

For IO operations:

import qualified Data.Text.IO as TIO
import qualified Data.Text.Lazy.IO as TLIO

For encoding operations:

import qualified Data.Text.Encoding as TE
import qualified Data.Text.Lazy.Encoding as TLE

In addition many libraries and alternative preludes will define the following type synonyms:

type LText = TL.Text
type LByteString = BL.ByteString

8.4 Text
The Text type is a packed blob of Unicode characters.

pack :: String -> Text
unpack :: Text -> String

STRINGS 152

{-# LANGUAGE OverloadedStrings #-}

import qualified Data.Text as T

-- From pack
myTStr1 :: T.Text
myTStr1 = T.pack ("foo" :: String)

-- From overloaded string literal.
myTStr2 :: T.Text
myTStr2 = "bar"

See: Text

8.5 Text.Builder

toLazyText :: Builder -> Data.Text.Lazy.Internal.Text
fromLazyText :: Data.Text.Lazy.Internal.Text -> Builder

The Text.Builder allows the efficient monoidal construction of lazy Text types without having to go
through inefficient forms like String or List types as intermediates.

{-# LANGUAGE OverloadedStrings #-}

import Data.Monoid (mconcat, (<>))

import Data.Text.Lazy.Builder (Builder, toLazyText)
import Data.Text.Lazy.Builder.Int (decimal)
import qualified Data.Text.Lazy.IO as L

beer :: Int -> Builder
beer n = decimal n <> " bottles of beer on the wall.\n"

wall :: Builder
wall = mconcat $ fmap beer [1..1000]

main :: IO ()
main = L.putStrLn $ toLazyText wall

8.6 ByteString
ByteStrings are arrays of unboxed characters with either strict or lazy evaluation.

http://hackage.haskell.org/package/text-1.1.0.1/docs/Data-Text.html

153 STRINGS

pack :: String -> ByteString
unpack :: ByteString -> String

{-# LANGUAGE OverloadedStrings #-}

import qualified Data.ByteString as S
import qualified Data.ByteString.Char8 as S8

-- From pack
bstr1 :: S.ByteString
bstr1 = S.pack [102, 111, 111] -- ascii encoding of foo as [Word8]

-- From overloaded string literal.
bstr2 :: S.ByteString
bstr2 = "bar"

8.7 Printf
Haskell also has a variadic printf function in the style of C.

import Data.Text
import Text.Printf

a :: Int
a = 3

b :: Double
b = 3.14159

c :: String
c = "haskell"

example :: String
example = printf "(%i, %f, %s)" a b c
-- "(3, 3.14159, haskell)"

8.8 Overloaded Lists
It is ubiquitous for data structure libraries to expose toList and fromList functions to construct various
structures out of lists. As of GHC 7.8 we now have the ability to overload the list syntax in the surface
language with the typeclass IsList .

STRINGS 154

class IsList l where
type Item l
fromList :: [Item l] -> l
fromListN :: Int -> [Item l] -> l
toList :: l -> [Item l]

instance IsList [a] where
type Item [a] = a
fromList = id
toList = id

�: :seti -XOverloadedLists
�: :type [1,2,3]
[1,2,3] :: (Num (GHC.Exts.Item l), GHC.Exts.IsList l) => l

For example we could write an overloaded list instance for hash tables that simply converts to the hash
table using fromList . Some math libraries that use vector-like structures will use overloaded lists in this
fashion.

{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE TypeFamilies #-}

import qualified Data.Map as Map
import GHC.Exts (IsList (..))

instance (Ord k) => IsList (Map.Map k v) where
type Item (Map.Map k v) = (k, v)
fromList = Map.fromList
toList = Map.toList

example1 :: Map.Map String Int
example1 = [("a", 1), ("b", 2)]

8.9 Regex
regex-tdfa implements POSIX extended regular expressions. These can operate over any of the major

string types and with OverloadedStrings enabled allows you to write well-typed regex expressions as
strings.

{-# LANGUAGE OverloadedStrings #-}

import Data.Text
import Text.Regex.TDFA

-- | Verify url address

155 STRINGS

url :: Text -> Bool
url input = input =~ urlRegex
where
urlRegex :: Text
urlRegex = "https?:\\/\\/(www\\.)?[-a-zA-Z0-9@:%._\\+~#=]{1,256}\\.[a-zA-Z0-9()]{1,6}\\b([-a-zA-Z0-9()@:%_\\+.~#?&//=]*)"

-- | Verify email address
email :: Text -> Bool
email input = input =~ emailRegex
where
emailRegex :: Text
emailRegex = "[a-zA-Z0-9+._-]+@[a-zA-Z-]+\\.[a-z]+"

8.10 Escaping Text
Haskell uses C-style single-character escape codes

Escape Unicode Character
\n U+000A newline
\0 U+0000 null character
\& n/a empty string
\’ U+0027 single quote
\\ U+005C backslash
\a U+0007 alert
\b U+0008 backspace
\f U+000C form feed
\r U+000D carriage return
\t U+0009 horizontal tab
\v U+000B vertical tab
\” U+0022 double quote

8.11 String Splitting
The split package provides a variety of missing functions for splitting list and string types.

import Data.List.Split

example1 :: [String]
example1 = splitOn "." "foo.bar.baz"
-- ["foo","bar","baz"]

example2 :: [String]
example2 = chunksOf 10 "To be or not to be that is the question."
-- ["To be or n","ot to be t","hat is the"," question."]

http://hackage.haskell.org/package/split-0.1.1/docs/Data-List-Split.html

STRINGS 156

Chapter 9

Applicatives

Like monads Applicatives are an abstract structure for a wide class of computations that sit between
functors and monads in terms of generality.

pure :: Applicative f => a -> f a
(<$>) :: Functor f => (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b

As of GHC 7.6, Applicative is defined as:

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap

With the following laws:

pure id <*> v = v
pure f <*> pure x = pure (f x)
u <*> pure y = pure ($ y) <*> u
u <*> (v <*> w) = pure (.) <*> u <*> v <*> w

As an example, consider the instance for Maybe:

instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
_ <*> Nothing = Nothing
Just f <*> Just x = Just (f x)

157

APPLICATIVES 158

As a rule of thumb, whenever we would use m >>= return . f what we probably want is an applicative
functor, and not a monad.

import Control.Applicative ((<$>), (<*>))
import Network.HTTP

example1 :: Maybe Integer
example1 = (+) <$> m1 <*> m2
where

m1 = Just 3
m2 = Nothing

-- Nothing

example2 :: [(Int, Int, Int)]
example2 = (,,) <$> m1 <*> m2 <*> m3
where

m1 = [1, 2]
m2 = [10, 20]
m3 = [100, 200]

-- [(1,10,100),(1,10,200),(1,20,100),(1,20,200),(2,10,100),(2,10,200),(2,20,100),(2,20,200)]

example3 :: IO String
example3 = (++) <$> fetch1 <*> fetch2
where

fetch1 = simpleHTTP (getRequest "http://www.python.org/") >>= getResponseBody
fetch2 = simpleHTTP (getRequest "http://www.haskell.org/") >>= getResponseBody

The pattern f <$> a <*> b ... shows up so frequently that there is a family of functions to lift applica-
tives of a fixed number arguments. This pattern also shows up frequently with monads (liftM , liftM2 ,
liftM3).

liftA :: Applicative f => (a -> b) -> f a -> f b
liftA f a = pure f <*> a

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
liftA2 f a b = f <$> a <*> b

liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 f a b c = f <$> a <*> b <*> c

Applicative also has functions *> and <* that sequence applicative actions while discarding the value
of one of the arguments. The operator *> discards the left while <* discards the right. For example in a
monadic parser combinator library the *> would parse with first parser argument but return the second.

The Applicative functions <$> and <*> are generalized by liftM and ap for monads.

159 APPLICATIVES

import Control.Monad
import Control.Applicative

data C a b = C a b

mnd :: Monad m => m a -> m b -> m (C a b)
mnd a b = C `liftM` a `ap` b

apl :: Applicative f => f a -> f b -> f (C a b)
apl a b = C <$> a <*> b

See: Applicative Programming with Effects

9.1 Alternative
Alternative is an extension of the Applicative class with a zero element and an associative binary operation
respecting the zero.

class Applicative f => Alternative f where
-- | The identity of '<|>'
empty :: f a
-- | An associative binary operation
(<|>) :: f a -> f a -> f a
-- | One or more.
some :: f a -> f [a]
-- | Zero or more.
many :: f a -> f [a]

optional :: Alternative f => f a -> f (Maybe a)

when :: (Alternative f) => Bool -> f () -> f ()
when p s = if p then s else return ()

guard :: (Alternative f) => Bool -> f ()
guard True = pure ()
guard False = mzero

instance Alternative Maybe where
empty = Nothing
Nothing <|> r = r
l <|> _ = l

instance Alternative [] where
empty = []
(<|>) = (++)

http://www.soi.city.ac.uk/~ross/papers/Applicative.pdf

APPLICATIVES 160

�: foldl1 (<|>) [Nothing, Just 5, Just 3]
Just 5

These instances show up very frequently in parsers where the alternative operator can model alternative
parse branches.

9.2 Arrows
A category is an algebraic structure that includes a notion of an identity and a composition operation
that is associative and preserves identities. In practice arrows are not often used in modern Haskell and
are often considered a code smell.

class Category cat where
id :: cat a a
(.) :: cat b c -> cat a b -> cat a c

instance Category (->) where
id = Prelude.id
(.) = (Prelude..)

(<<<) :: Category cat => cat b c -> cat a b -> cat a c
(<<<) = (.)

(>>>) :: Category cat => cat a b -> cat b c -> cat a c
f >>> g = g . f

Arrows are an extension of categories with the notion of products.

class Category a => Arrow a where
arr :: (b -> c) -> a b c
first :: a b c -> a (b,d) (c,d)
second :: a b c -> a (d,b) (d,c)
(***) :: a b c -> a b' c' -> a (b,b') (c,c')
(&&&) :: a b c -> a b c' -> a b (c,c')

The canonical example is for functions.

instance Arrow (->) where
arr f = f

161 APPLICATIVES

first f = f *** id
second f = id *** f
(***) f g ~(x,y) = (f x, g y)

In this form, functions of multiple arguments can be threaded around using the arrow combinators in
a much more pointfree form. For instance a histogram function has a nice one-liner.

import Data.List (group, sort)

histogram :: Ord a => [a] -> [(a, Int)]
histogram = map (head &&& length) . group . sort

�: histogram "Hello world"
[(' ',1),('H',1),('d',1),('e',1),('l',3),('o',2),('r',1),('w',1)]

Arrow notation
GHC has builtin syntax for composing arrows using proc notation. The following are equivalent after

desugaring:

{-# LANGUAGE Arrows #-}

addA :: Arrow a => a b Int -> a b Int -> a b Int
addA f g = proc x -> do

y <- f -< x
z <- g -< x
returnA -< y + z

addA f g = arr (\ x -> (x, x)) >>>
first f >>> arr (\ (y, x) -> (x, y)) >>>
first g >>> arr (\ (z, y) -> y + z)

addA f g = f &&& g >>> arr (\ (y, z) -> y + z)

In practice this notation is not often used and may become deprecated in the future.
See: Arrow Notation

9.3 Bifunctors
Bifunctors are a generalization of functors to include types parameterized by two parameters and include
two map functions for each parameter.

https://downloads.haskell.org/~ghc/7.8.3/docs/html/users_guide/arrow-notation.html

APPLICATIVES 162

class Bifunctor p where
bimap :: (a -> b) -> (c -> d) -> p a c -> p b d
first :: (a -> b) -> p a c -> p b c
second :: (b -> c) -> p a b -> p a c

The bifunctor laws are a natural generalization of the usual functor laws. Namely they respect identities
and composition in the usual way:

bimap id id � id
first id � id
second id � id

bimap f g � first f . second g

The canonical example is for 2-tuples.

�: first (+1) (1,2)
(2,2)
�: second (+1) (1,2)
(1,3)
�: bimap (+1) (+1) (1,2)
(2,3)

�: first (+1) (Left 3)
Left 4
�: second (+1) (Left 3)
Left 3
�: second (+1) (Right 3)
Right 4

9.4 Polyvariadic Functions
One surprising application of typeclasses is the ability to construct functions which take an arbitrary
number of arguments by defining instances over function types. The arguments may be of arbitrary type,
but the resulting collected arguments must either be converted into a single type or unpacked into a sum
type.

{-# LANGUAGE FlexibleInstances #-}

class Arg a where
collect' :: [String] -> a

163 APPLICATIVES

-- extract to IO
instance Arg (IO ()) where
collect' acc = mapM_ putStrLn acc

-- extract to [String]
instance Arg [String] where
collect' acc = acc

instance (Show a, Arg r) => Arg (a -> r) where
collect' acc = \x -> collect' (acc ++ [show x])

collect :: Arg t => t
collect = collect' []

example1 :: [String]
example1 = collect 'a' 2 3.0

example2 :: IO ()
example2 = collect () "foo" [1,2,3]

APPLICATIVES 164

Chapter 10

Error Handling

There are a plethora of ways of handling errors in Haskell. While Haskell’s runtime supports throwing
and handling exceptions, it is important to use the right method in the right context.

10.1 Either Monad
In keeping with the Haskell tradition it is always preferable to use pure logic when possible. In many
simple cases error handling can be done quite simply by using the Monad instance of Either. Monadic
bind simply threads a Right value through the monad and “short-circuits” evaluation when a Left is
introduced. This is simple enough error handling which privileges the Left constructor to hold the error.
Many simple functions which can fail can simply use the Either Error a in the result type to encode
simple error handling.

The downside to this is that it forces every consumer of the function to pattern match on the result to
handle the error case. It also assumes that all Error types can be encoded inside of the sum type holding
the possible failures.

saveDiv -> Float -> Float -> Either DivError Float
safeDiv x 0 = Left NoDivZero
safeDiv x y = Right (x `div` y)

10.2 ExceptT
When using the transformers style effect stacks it is quite common to need to have a layer of the stack
which can fail. When using the style of composing effects a monad transformer (which is a wrapper around
Either monad) can be added which lifts the error handling into an ExceptT effect layer.

As of mtl 2.2 or higher, the ErrorT class has been replaced by ExceptT at the transformers level.

newtype ExceptT e m a = ExceptT (m (Either e a))

runExceptT :: ExceptT e m a -> m (Either e a)
runExceptT (ExceptT m) = m

instance (Monad m) => Monad (ExceptT e m) where
return a = ExceptT $ return (Right a)

165

ERROR HANDLING 166

m >>= k = ExceptT $ do
a <- runExceptT m
case a of

Left e -> return (Left e)
Right x -> runExceptT (k x)

fail = ExceptT . fail

throwE :: (Monad m) => e -> ExceptT e m a
throwE = ExceptT . return . Left

catchE :: (Monad m) =>
ExceptT e m a -- ^ the inner computation
-> (e -> ExceptT e' m a) -- ^ a handler for exceptions in the inner

-- computation
-> ExceptT e' m a

m `catchE` h = ExceptT $ do
a <- runExceptT m
case a of

Left l -> runExceptT (h l)
Right r -> return (Right r)

And also this can be extended to the mtl MonadError instance for which we can write instances for IO
and Either themselves:

instance MonadTrans (ExceptT e) where
lift = ExceptT . liftM Right

class (Monad m) => MonadError e m | m -> e where
throwError :: e -> m a
catchError :: m a -> (e -> m a) -> m a

instance MonadError IOException IO where
throwError = ioError
catchError = catch

instance MonadError e (Either e) where
throwError = Left
Left l `catchError` h = h l
Right r `catchError` _ = Right r

See:

• Control.Monad.Except

10.3 Control.Exception
GHC has a builtin system for propagating errors up at the runtime level, below the business logic level.
These are used internally for all sorts of concurrency and system interfaces. The runtime provides builtin
operations throw and catch functions which allow us to throw exceptions in pure code and catch the
resulting exception within IO. Note that the return value of throw inhabits all types.

https://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Except.html

167 ERROR HANDLING

throw :: Exception e => e -> a
catch :: Exception e => IO a -> (e -> IO a) -> IO a
try :: Exception e => IO a -> IO (Either e a)
evaluate :: a -> IO a

{-# LANGUAGE DeriveDataTypeable #-}

import Data.Typeable
import Control.Exception

data MyException = MyException
deriving (Show, Typeable)

instance Exception MyException

evil :: [Int]
evil = [throw MyException]

example1 :: Int
example1 = head evil

example2 :: Int
example2 = length evil

main :: IO ()
main = do
a <- try (evaluate example1) :: IO (Either MyException Int)
print a

b <- try (return example2) :: IO (Either MyException Int)
print b

Because a value will not be evaluated unless needed, if one desires to know for sure that an exception is
either caught or not it can be deeply forced into head normal form before invoking catch. The strictCatch
is not provided by the standard library but has a simple implementation in terms of deepseq .

strictCatch :: (NFData a, Exception e) => IO a -> (e -> IO a) -> IO a
strictCatch = catch . (toNF =<<)

10.4 Exceptions
The problem with the previous approach is having to rely on GHC’s asynchronous exception handling
inside of IO to handle basic operations and the bifurcation of APIs which need to expose different APIs
for any monad that has failure (IO , STM , ExceptT , etc.).

The exceptions package provides the same API as Control.Exception but loosens the dependency on

ERROR HANDLING 168

IO. It instead provides a granular set of typeclasses which can operate over different monads which require
a precise subset of error handling methods.

• MonadThrow - Monads which expose an interface for throwing exceptions.
• MonadCatch - Monads which expose an interface for handling exceptions.
• MonadMask - Monads which expose an interface for masking asynchronous exceptions.

There are three core primitives that are used in handling runtime exceptions:

• finally - For handling guaranteed finalisation of code in the presence of exceptions.
• onException - For handing exception case only if an exception is thrown.
• bracket - For implementing resource handling with custom acquisition and finalizer logic, in the

presence of exceptions.

finally takes an IO action to run as a computation and a secondary function to run after the
evaluation of the first.

finally :: IO a -- ^ computation to run first
-> IO b -- ^ computation to run afterward (even if an exception was raised)
-> IO a -- returns the value from the first computation

onException has a similar signature but the second function is run only if an exception is raised.

onException :: IO a -> IO b -> IO a

The bracket function takes two functions, an acquisition function and a finalizer function which
“bracket” the evaluation of the third. The finaliser will be run if the computation throwns an exception
and unwinds.

bracket
:: IO a -- ^ computation to run first
-> (a -> IO b) -- ^ computation to run last
-> (a -> IO c) -- ^ computation to run in-between
-> IO c -- returns the value from the in-between computation

A simple example of usage is bracket logic that handles file descriptors which need to be explicitly
closed after evaluation is done. The initialiser in this case will return a file descriptor to the body and
then run hClose on the file descriptor after the body is done with evaluation.

bracket
(openFile "myfile" ReadMode) -- acquisition
(hClose) -- finaliser
(\fileHandle -> ...) -- body

In addition the exceptions library exposes several functions for explicitly handling a variety of excep-
tions of various forms. Toplevel handlers that need to “catch em’ all” should use catchAny for wildcard
error handling.

169 ERROR HANDLING

catch :: (MonadCatch m, Exception e) => m a -> (e -> m a) -> m a
catchIO :: MonadCatch m => m a -> (IOException -> m a) -> m a
catchAny :: MonadCatch m => m a -> (SomeException -> m a) -> m a
catchAsync :: (MonadCatch m, Exception e) => m a -> (e -> m a) -> m a

A simple example of usage:

{-# LANGUAGE DeriveDataTypeable #-}

import Data.Typeable
import Control.Monad.Catch
import Control.Monad.Identity

data MyException = MyException
deriving (Show, Typeable)

instance Exception MyException

example :: MonadCatch m => Int -> Int -> m Int
example x y | y == 0 = throwM MyException

| otherwise = return $ x `div` y

pure :: MonadCatch m => m (Either MyException Int)
pure = do
a <- try (example 1 2)
b <- try (example 1 0)
return (a >> b)

See: exceptions

10.5 Spoon
Sometimes you’ll be forced to deal with seemingly pure functions that can throw up at any point. There
are many functions in the standard library like this, and many more on Hackage. You’d like to handle
this logic purely as if it were returning a proper Maybe a but to catch the logic you’d need to install an
IO handler inside IO to catch it. Spoon allows us to safely (and “purely”, although it uses a referentially
transparent invocation of unsafePerformIO) to catch these exceptions and put them in Maybe where they
belong.

The spoon function evaluates its argument to head normal form, while teaspoon evaluates to weak
head normal form.

import Control.Spoon

goBoom :: Int -> Int -> Int
goBoom x y = x `div` y

-- evaluate to normal form

http://hackage.haskell.org/package/exceptions

ERROR HANDLING 170

test1 :: Maybe [Int]
test1 = spoon [1, 2, undefined]

-- evaluate to weak head normal form
test2 :: Maybe [Int]
test2 = teaspoon [1, 2, undefined]

main :: IO ()
main = do
maybe (putStrLn "Nothing") (print . length) test1
maybe (putStrLn "Nothing") (print . length) test2

Chapter 11

Advanced Monads

When working with the wider library you will find there a variety of “advanced monads” which are higher-
level constructions on top of of the monadic interface which enrich the structure with additional rules or
build APIs for combining different types of monads. Some of the most-used cases are mentioned in this
section.

11.1 Function Monad
If one writes Haskell long enough one might eventually encounter the curious beast that is the ((->) r)
monad instance. It generally tends to be non-intuitive to work with, but is quite simple when one considers
it as an unwrapped Reader monad.

instance Functor ((->) r) where
fmap = (.)

instance Monad ((->) r) where
return = const
f >>= k = \r -> k (f r) r

This just uses a prefix form of the arrow type operator.

import Control.Monad

id' :: (->) a a
id' = id

const' :: (->) a ((->) b a)
const' = const

-- Monad m => a -> m a
fret :: a -> b -> a
fret = return

-- Monad m => m a -> (a -> m b) -> m b
fbind :: (r -> a) -> (a -> (r -> b)) -> (r -> b)
fbind f k = f >>= k

171

ADVANCED MONADS 172

-- Monad m => m (m a) -> m a
fjoin :: (r -> (r -> a)) -> (r -> a)
fjoin = join

fid :: a -> a
fid = const >>= id

-- Functor f => (a -> b) -> f a -> f b
fcompose :: (a -> b) -> (r -> a) -> (r -> b)
fcompose = (.)

type Reader r = (->) r -- pseudocode

instance Monad (Reader r) where
return a = _ -> a
f >>= k = \r -> k (f r) r

ask' :: r -> r
ask' = id

asks' :: (r -> a) -> (r -> a)
asks' f = id . f

runReader' :: (r -> a) -> r -> a
runReader' = id

11.2 RWS Monad
The RWS monad combines the functionality of the three monads discussed above, the Reader, Writer,
and State. There is also a RWST transformer.

runReader :: Reader r a -> r -> a
runWriter :: Writer w a -> (a, w)
runState :: State s a -> s -> (a, s)

These three eval functions are now combined into the following functions:

runRWS :: RWS r w s a -> r -> s -> (a, s, w)
execRWS :: RWS r w s a -> r -> s -> (s, w)
evalRWS :: RWS r w s a -> r -> s -> (a, w)

173 ADVANCED MONADS

import Control.Monad.RWS

type R = Int
type W = [Int]
type S = Int

computation :: RWS R W S ()
computation = do
e <- ask
a <- get
let b = a + e
put b
tell [b]

example = runRWS computation 2 3

The usual caveat about Writer laziness also applies to RWS.

11.3 Cont

runCont :: Cont r a -> (a -> r) -> r
callCC :: MonadCont m => ((a -> m b) -> m a) -> m a
cont :: ((a -> r) -> r) -> Cont r a

In continuation passing style, composite computations are built up from sequences of nested compu-
tations which are terminated by a final continuation which yields the result of the full computation by
passing a function into the continuation chain.

add :: Int -> Int -> Int
add x y = x + y

add :: Int -> Int -> (Int -> r) -> r
add x y k = k (x + y)

import Control.Monad
import Control.Monad.Cont

add :: Int -> Int -> Cont k Int
add x y = return $ x + y

mult :: Int -> Int -> Cont k Int
mult x y = return $ x * y

ADVANCED MONADS 174

contt :: ContT () IO ()
contt = do

k <- do
callCC $ \exit -> do

lift $ putStrLn "Entry"
exit $ _ -> do
putStrLn "Exit"

lift $ putStrLn "Inside"
lift $ k ()

callcc :: Cont String Integer
callcc = do
a <- return 1
b <- callCC (\k -> k 2)
return $ a+b

ex1 :: IO ()
ex1 = print $ runCont (f >>= g) id
where

f = add 1 2
g = mult 3

-- 9

ex2 :: IO ()
ex2 = print $ runCont callcc show
-- "3"

ex3 :: IO ()
ex3 = runContT contt print
-- Entry
-- Inside
-- Exit

main :: IO ()
main = do
ex1
ex2
ex3

newtype Cont r a = Cont { runCont :: ((a -> r) -> r) }

instance Monad (Cont r) where
return a = Cont $ \k -> k a
(Cont c) >>= f = Cont $ \k -> c (\a -> runCont (f a) k)

class (Monad m) => MonadCont m where
callCC :: ((a -> m b) -> m a) -> m a

instance MonadCont (Cont r) where
callCC f = Cont $ \k -> runCont (f (\a -> Cont $ _ -> k a)) k

175 ADVANCED MONADS

• MonadCont Under the Hood

11.4 MonadPlus
Choice and failure.

class (Alternative m, Monad m) => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

instance MonadPlus [] where
mzero = []
mplus = (++)

instance MonadPlus Maybe where
mzero = Nothing

Nothing `mplus` ys = ys
xs `mplus` _ys = xs

MonadPlus forms a monoid with

mzero `mplus` a = a
a `mplus` mzero = a
(a `mplus` b) `mplus` c = a `mplus` (b `mplus` c)

asum :: (Foldable t, Alternative f) => t (f a) -> f a
asum = foldr (<|>) empty

msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
msum = asum

import Safe
import Control.Monad

list1 :: [(Int,Int)]
list1 = [(a,b) | a <- [1..25], b <- [1..25], a < b]

list2 :: [(Int,Int)]
list2 = do
a <- [1..25]
b <- [1..25]
guard (a < b)
return $ (a,b)

https://wiki.haskell.org/MonadCont_under_the_hood

ADVANCED MONADS 176

maybe1 :: String -> String -> Maybe Double
maybe1 a b = do
a' <- readMay a
b' <- readMay b
guard (b' /= 0.0)
return $ a'/b'

maybe2 :: Maybe Int
maybe2 = msum [Nothing, Nothing, Just 3, Just 4]

11.5 MonadFail
Before the great awakening, Monads used to be defined as the following class.

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a
fail :: String -> m a

m >> k = m >>= _ -> k
fail s = error s

This was eventually deemed not to be an great design and in particular the fail function was a
misplaced lawless entity that would generate bottoms. It was also necessary to define fail for all monads,
even those without a notion of failure. This was considered quite ugly and eventually a breaking change
to base (landed in 4.9) was added which split out MonadFail into a separate class where it belonged.

class Monad m => MonadFail m where
fail :: String -> m a

Some of the common instances of MonadFail are shown below:

instance MonadFail Maybe where
fail _ = Nothing

instance MonadFail [] where
{-# INLINE fail #-}
fail _ = []

instance MonadFail IO where
fail = failIO

177 ADVANCED MONADS

11.6 MonadFix
The fixed point of a monadic computation. mfix f executes the action f only once, with the eventual
output fed back as the input.

fix :: (a -> a) -> a
fix f = let x = f x in x

mfix :: (a -> m a) -> m a

class Monad m => MonadFix m where
mfix :: (a -> m a) -> m a

instance MonadFix Maybe where
mfix f = let a = f (unJust a) in a

where unJust (Just x) = x
unJust Nothing = error "mfix Maybe: Nothing"

The regular do-notation can also be extended with -XRecursiveDo to accommodate recursive monadic
bindings.

{-# LANGUAGE RecursiveDo #-}

import Control.Applicative
import Control.Monad.Fix

stream1 :: Maybe [Int]
stream1 = do
rec xs <- Just (1:xs)
return (map negate xs)

stream2 :: Maybe [Int]
stream2 = mfix $ \xs -> do
xs' <- Just (1:xs)
return (map negate xs')

11.7 ST Monad
The ST monad models “threads” of stateful computations which can manipulate mutable references but
are restricted to only return pure values when evaluated and are statically confined to the ST monad of
a s thread.

runST :: (forall s. ST s a) -> a
newSTRef :: a -> ST s (STRef s a)

ADVANCED MONADS 178

readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

import Control.Monad
import Control.Monad.ST
import Control.Monad.State.Strict
import Data.STRef

example1 :: Int
example1 = runST $ do
x <- newSTRef 0
forM_ [1 .. 1000] $ \j -> do

writeSTRef x j
readSTRef x

example2 :: Int
example2 = runST $ do
count <- newSTRef 0
replicateM_ (10 ^ 6) $ modifySTRef' count (+ 1)
readSTRef count

example3 :: Int
example3 = flip evalState 0 $ do
replicateM_ (10 ^ 6) $ modify' (+ 1)
get

Using the ST monad we can create a class of efficient purely functional data structures that use mutable
references in a referentially transparent way.

11.8 Free Monads

Pure :: a -> Free f a
Free :: f (Free f a) -> Free f a

liftF :: (Functor f, MonadFree f m) => f a -> m a
retract :: Monad f => Free f a -> f a

Free monads are monads which instead of having a join operation that combines computations,
instead forms composite computations from application of a functor.

join :: Monad m => m (m a) -> m a
wrap :: MonadFree f m => f (m a) -> m a

179 ADVANCED MONADS

One of the best examples is the Partiality monad which models computations which can diverge.
Haskell allows unbounded recursion, but for example we can create a free monad from the Maybe functor
which can be used to fix the call-depth of, for example the Ackermann function.

import Control.Monad.Fix
import Control.Monad.Free

type Partiality a = Free Maybe a

-- Non-termination.
never :: Partiality a
never = fix (Free . Just)

fromMaybe :: Maybe a -> Partiality a
fromMaybe (Just x) = Pure x
fromMaybe Nothing = Free Nothing

runPartiality :: Int -> Partiality a -> Maybe a
runPartiality 0 _ = Nothing
runPartiality _ (Pure a) = Just a
runPartiality _ (Free Nothing) = Nothing
runPartiality n (Free (Just a)) = runPartiality (n-1) a

ack :: Int -> Int -> Partiality Int
ack 0 n = Pure $ n + 1
ack m 0 = Free $ Just $ ack (m-1) 1
ack m n = Free $ Just $ ack m (n-1) >>= ack (m-1)

main :: IO ()
main = do
let diverge = never :: Partiality ()
print $ runPartiality 1000 diverge
print $ runPartiality 1000 (ack 3 4)
print $ runPartiality 5500 (ack 3 4)

The other common use for free monads is to build embedded domain-specific languages to describe
computations. We can model a subset of the IO monad by building up a pure description of the compu-
tation inside of the IOFree monad and then using the free monad to encode the translation to an effectful
IO computation.

{-# LANGUAGE DeriveFunctor #-}

import Control.Monad.Free
import System.Exit

data Interaction x
= Puts String x
| Gets (Char -> x)
| Exit
deriving (Functor)

https://en.wikipedia.org/wiki/Ackermann_function

ADVANCED MONADS 180

type IOFree a = Free Interaction a

puts :: String -> IOFree ()
puts s = liftF $ Puts s ()

get :: IOFree Char
get = liftF $ Gets id

exit :: IOFree r
exit = liftF Exit

gets :: IOFree String
gets = do
c <- get
if c == '\n'

then return ""
else gets >>= \line -> return (c : line)

-- Collapse our IOFree DSL into IO monad actions.
interp :: IOFree a -> IO a
interp (Pure r) = return r
interp (Free x) = case x of
Puts s t -> putStrLn s >> interp t
Gets f -> getChar >>= interp . f
Exit -> exitSuccess

echo :: IOFree ()
echo = do
puts "Enter your name:"
str <- gets
puts str
if length str > 10

then puts "You have a long name."
else puts "You have a short name."

exit

main :: IO ()
main = interp echo

An implementation such as the one found in free might look like the following:

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

data Free f a
= Pure a
| Free (f (Free f a))

instance Functor f => Functor (Free f) where
fmap f (Pure a) = Pure (f a)

http://hackage.haskell.org/package/free

181 ADVANCED MONADS

fmap f x = go x
where

go (Free fa) = Free (go <$> fa)

instance Applicative f => Applicative (Free f) where
pure = Pure
Pure a <*> Pure b = Pure $ a b
Pure a <*> Free mb = Free $ fmap a <$> mb
Free ma <*> Pure b = Free $ fmap ($ b) <$> ma
Free ma <*> Free mb = Free $ fmap (<*>) ma <*> mb

instance Applicative f => Monad (Free f) where
return = Pure
Pure a >>= f = f a
Free f >>= g = Free (fmap (>>= g) f)

class Monad m => MonadFree f m where
wrap :: f (m a) -> m a

instance Applicative f => MonadFree f (Free f) where
wrap = Free

liftF :: (Functor f, MonadFree f m) => f a -> m a
liftF = wrap . fmap return

iter :: Functor f => (f a -> a) -> Free f a -> a
iter _ (Pure a) = a
iter phi (Free m) = phi (iter phi <$> m)

retract :: Monad f => Free f a -> f a
retract (Pure a) = return a
retract (Free as) = as >>= retract

11.9 Indexed Monads
Indexed monads are a generalisation of monads that adds an additional type parameter to the class that
carries information about the computation or structure of the monadic implementation.

class IxMonad md where
return :: a -> md i i a
(>>=) :: md i m a -> (a -> md m o b) -> md i o b

The canonical use-case is a variant of the vanilla State which allows type-changing on the state for
intermediate steps inside of the monad. This indeed turns out to be very useful for handling a class
of problems involving resource management since the extra index parameter gives us space to statically
enforce the sequence of monadic actions by allowing and restricting certain state transitions on the index
parameter at compile-time.

To make this more usable we’ll use the somewhat esoteric -XRebindableSyntax allowing us to overload
the do-notation and if-then-else syntax by providing alternative definitions local to the module.

ADVANCED MONADS 182

{-# LANGUAGE RebindableSyntax #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE NoMonomorphismRestriction #-}

import Data.IORef
import Data.Char
import Prelude hiding (fmap, (>>=), (>>), return)
import Control.Applicative

newtype IState i o a = IState { runIState :: i -> (a, o) }

evalIState :: IState i o a -> i -> a
evalIState st i = fst $ runIState st i

execIState :: IState i o a -> i -> o
execIState st i = snd $ runIState st i

ifThenElse :: Bool -> a -> a -> a
ifThenElse b i j = case b of
True -> i
False -> j

return :: a -> IState s s a
return a = IState $ \s -> (a, s)

fmap :: (a -> b) -> IState i o a -> IState i o b
fmap f v = IState $ \i -> let (a, o) = runIState v i

in (f a, o)

join :: IState i m (IState m o a) -> IState i o a
join v = IState $ \i -> let (w, m) = runIState v i

in runIState w m

(>>=) :: IState i m a -> (a -> IState m o b) -> IState i o b
v >>= f = IState $ \i -> let (a, m) = runIState v i

in runIState (f a) m

(>>) :: IState i m a -> IState m o b -> IState i o b
v >> w = v >>= _ -> w

get :: IState s s s
get = IState $ \s -> (s, s)

gets :: (a -> o) -> IState a o a
gets f = IState $ \s -> (s, f s)

put :: o -> IState i o ()
put o = IState $ _ -> ((), o)

modify :: (i -> o) -> IState i o ()
modify f = IState $ \i -> ((), f i)

183 ADVANCED MONADS

data Locked = Locked
data Unlocked = Unlocked

type Stateful a = IState a Unlocked a

acquire :: IState i Locked ()
acquire = put Locked

-- Can only release the lock if it's held, try release the lock
-- that's not held is a now a type error.
release :: IState Locked Unlocked ()
release = put Unlocked

-- Statically forbids improper handling of resources.
lockExample :: Stateful a
lockExample = do
ptr <- get :: IState a a a
acquire :: IState a Locked ()
-- ...
release :: IState Locked Unlocked ()
return ptr

-- Couldn't match type `Locked' with `Unlocked'
-- In a stmt of a 'do' block: return ptr
failure1 :: Stateful a
failure1 = do
ptr <- get
acquire
return ptr -- didn't release

-- Couldn't match type `a' with `Locked'
-- In a stmt of a 'do' block: release
failure2 :: Stateful a
failure2 = do
ptr <- get
release -- didn't acquire
return ptr

-- Evaluate the resulting state, statically ensuring that the
-- lock is released when finished.
evalReleased :: IState i Unlocked a -> i -> a
evalReleased f st = evalIState f st

example :: IO (IORef Integer)
example = evalReleased <$> pure lockExample <*> newIORef 0

11.10 Lifted Base
The default prelude predates a lot of the work on monad transformers and as such many of the common
functions for handling errors and interacting with IO are bound strictly to the IO monad and not to

ADVANCED MONADS 184

functions implementing stacks on top of IO or ST. The lifted-base provides generic control operations
such as catch can be lifted from IO or any other base monad.

monad-base

Monad base provides an abstraction over liftIO and other functions to explicitly lift into a “privileged”
layer of the transformer stack. It’s implemented as a multiparameter typeclass with the “base” monad as
the parameter b.

-- | Lift a computation from the base monad
class (Applicative b, Applicative m, Monad b, Monad m)

=> MonadBase b m | m -> b where
liftBase � b a -> m a

monad-control

Monad control builds on top of monad-base to extended lifting operation to control operations like catch
and bracket can be written generically in terms of any transformer with a base layer supporting these
operations. Generic operations can then be expressed in terms of a MonadBaseControl and written in terms
of the combinator control which handles the bracket and automatic handler lifting.

control :: MonadBaseControl b m => (RunInBase m b -> b (StM m a)) -> m a

For example the function catch provided by Control.Exception is normally locked into IO.

catch :: Exception e => IO a -> (e -> IO a) -> IO a

By composing it in terms of control we can construct a generic version which automatically lifts inside
of any combination of the usual transformer stacks that has MonadBaseControl instance.

catch
:: (MonadBaseControl IO m, Exception e)
=> m a -- ^ Computation
-> (e -> m a) -- ^ Handler
-> m a

catch a handler = control $ \runInIO ->
E.catch (runInIO a)

(\e -> runInIO $ handler e)

Chapter 12

Quantification

In logic a predicate is a statement about a subject. For instance the statement: Socrates is a man, can
be written as:

Man(Socrates)

A predicate assigned to a variable Man(x) has a truth value if the predicate holds for the subject.
The domain of a variable is the set of all variables that may be assigned to the variable. A quantifier
turns predicates into propositions by assigning values to all variables. For example the statement: All
men are mortal. This is an example of a universal quantifier which describe a predicate that holds forall
inhabitants of the domain of variables.

Forall x. If Man(x) then Mortal(x)

The truth value that that Socrates is mortal can be derived from above relation. Programming with
quantifiers in Haskell follows this same kind of logical convention except we will be working with types
and constraints on types.

12.1 Universal Quantification
Universal quantification the primary mechanism of encoding polymorphism in Haskell. The essence of
universal quantification is that we can express functions which operate the same way for a set of types
and whose function behavior is entirely determined only by the behavior of all types in this span. These
are represented at the type-level by in the introduction of a universal quantifier (forall or �) over a set
of the type variables in the signature.

{-# LANGUAGE ExplicitForAll #-}

-- �a. [a]
example1 :: forall a. [a]
example1 = []

-- �a. [a]
example2 :: forall a. [a]
example2 = [undefined]

-- �a. �b. (a → b) → [a] → [b]
map' :: forall a. forall b. (a -> b) -> [a] -> [b]
map' f = foldr ((:) . f) []

185

QUANTIFICATION 186

-- �a. [a] → [a]
reverse' :: forall a. [a] -> [a]
reverse' = foldl (flip (:)) []

Normally quantifiers are omitted in type signatures since in Haskell’s vanilla surface language it is
unambiguous to assume to that free type variables are universally quantified. So the following two are
equivalent:

id :: forall a. a -> a
id :: a -> a

12.2 Free Theorems
A universally quantified type-variable actually implies quite a few rather deep properties about the imple-
mentation of a function that can be deduced from its type signature. For instance the identity function
in Haskell is guaranteed to only have one implementation since the only information that the information
that can present in the body:

id :: forall a. a -> a
id x = x

These so called free theorems are properties that hold for any well-typed inhabitant of a universally
quantified signature.

fmap :: Functor f => (a -> b) -> f a -> f b

For example a free theorem of fmap is that every implementation of functor can only ever have the
property that composition of maps of functions is the same as maps of the functions composed together.

forall f g. fmap f . fmap g = fmap (f . g)

12.3 Type Systems
Hindley-Milner type system

The Hindley-Milner type system is historically important as one of the first typed lambda calculi that
admitted both polymorphism and a variety of inference techniques that could always decide principal
types.

187 QUANTIFICATION

e : x
| �x:t.e -- value abstraction
| e1 e2 -- application
| let x = e1 in e2 -- let

t : t -> t -- function types
| a -- type variables

� : � a . t -- type scheme

In an type checker implementation, a generalize function converts all type variables within the type
into polymorphic type variables yielding a type scheme. While a instantiate function maps a scheme to a
type, but with any polymorphic variables converted into unbound type variables.

12.4 Rank-N Types
System-F is the type system that underlies Haskell. System-F subsumes the HM type system in the sense
that every type expressible in HM can be expressed within System-F. System-F is sometimes referred to
in texts as the Girald-Reynolds polymorphic lambda calculus or second-order lambda calculus.

t : t -> t -- function types
| a -- type variables
| � a . t -- forall

e : x -- variables
| �(x:t).e -- value abstraction
| e1 e2 -- value application
| Λa.e -- type abstraction
| e_t -- type application

An example with equivalents of GHC Core in comments:

id : � t. t -> t
id = Λt. �x:t. x
-- id :: forall t. t -> t
-- id = \ (@ t) (x :: t) -> x

tr : � a. � b. a -> b -> a
tr = Λa. Λb. �x:a. �y:b. x
-- tr :: forall a b. a -> b -> a
-- tr = \ (@ a) (@ b) (x :: a) (y :: b) -> x

fl : � a. � b. a -> b -> b
fl = Λa. Λb. �x:a. �y:b. y
-- fl :: forall a b. a -> b -> b
-- fl = \ (@ a) (@ b) (x :: a) (y :: b) -> y

nil : � a. [a]

QUANTIFICATION 188

nil = Λa. Λb. �z:b. �f:(a -> b -> b). z
-- nil :: forall a. [a]
-- nil = \ (@ a) (@ b) (z :: b) (f :: a -> b -> b) -> z

cons : � a. a -> [a] -> [a]
cons = Λa. �x:a. �xs:(� b. b -> (a -> b -> b) -> b).

Λb. �z:b. �f : (a -> b -> b). f x (xs_b z f)
-- cons :: forall a. a -> [a] -> [a]
-- cons = \ (@ a) (x :: a) (xs :: forall b. b -> (a -> b -> b) -> b)
-- (@ b) (z :: b) (f :: a -> b -> b) -> f x (xs @ b z f)

Normally when Haskell’s typechecker infers a type signature it places all quantifiers of type variables
at the outermost position such that no quantifiers appear within the body of the type expression, called
the prenex restriction. This restricts an entire class of type signatures that would otherwise be expressible
within System-F, but has the benefit of making inference much easier.

-XRankNTypes loosens the prenex restriction such that we may explicitly place quantifiers within the
body of the type. The bad news is that the general problem of inference in this relaxed system is
undecidable in general, so we’re required to explicitly annotate functions which use RankNTypes or they
are otherwise inferred as rank 1 and may not typecheck at all.

{-# LANGUAGE RankNTypes #-}

-- Can't unify (Bool ~ Char)
rank1 :: forall a. (a -> a) -> (Bool, Char)
rank1 f = (f True, f 'a')

rank2 :: (forall a. a -> a) -> (Bool, Char)
rank2 f = (f True, f 'a')

auto :: (forall a. a -> a) -> (forall b. b -> b)
auto x = x

xauto :: forall a. (forall b. b -> b) -> a -> a
xauto f = f

Monomorphic Rank 0: t
Polymorphic Rank 1: forall a. a -> t
Polymorphic Rank 2: (forall a. a -> t) -> t
Polymorphic Rank 3: ((forall a. a -> t) -> t) -> t

Of important note is that the type variables bound by an explicit quantifier in a higher ranked type may
not escape their enclosing scope. The typechecker will explicitly enforce this by enforcing that variables
bound inside of rank-n types (called skolem constants) will not unify with free meta type variables inferred
by the inference engine.

189 QUANTIFICATION

{-# LANGUAGE RankNTypes #-}

escape :: (forall a. a -> a) -> Int
escape f = f 0

g x = escape (\a -> x)

In this example in order for the expression to be well typed, f would necessarily have (Int -> Int)
which implies that a ~ Int over the whole type, but since a is bound under the quantifier it must not
be unified with Int and so the typechecker must fail with a skolem capture error.

Couldn't match expected type `a' with actual type `t'
`a' is a rigid type variable bound by a type expected by the context: a -> a
`t' is a rigid type variable bound by the inferred type of g :: t -> Int
In the expression: x In the first argument of `escape', namely `(\ a -> x)'
In the expression: escape (\ a -> x)

This can actually be used for our advantage to enforce several types of invariants about scope and use
of specific type variables. For example the ST monad uses a second rank type to prevent the capture of
references between ST monads with separate state threads where the s type variable is bound within a
rank-2 type and cannot escape, statically guaranteeing that the implementation details of the ST internals
can’t leak out and thus ensuring its referential transparency.

12.5 Existential Quantification
An existential type is a pair of a type and a term with a special set of packing and unpacking semantics.
The type of the value encoded in the existential is known by the producer but not by the consumer of the
existential value.

{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE RankNTypes #-}

-- � t. (t, t → t, t → String)
data Box = forall a. Box
{ value :: a
, update :: a -> a
, print :: a -> String
}

boxa :: Box
boxa = Box 1 negate show

boxb :: Box
boxb = Box "foo" reverse show

apply :: Box -> String
apply (Box x f p) = p (f x)

QUANTIFICATION 190

-- � t. Show t => t
data SBox = forall a. Show a => SBox a

boxes :: [SBox]
boxes = [SBox (), SBox 2, SBox "foo"]

showBox :: SBox -> String
showBox (SBox a) = show a

main :: IO ()
main = mapM_ (putStrLn . showBox) boxes
-- ()
-- 2
-- "foo"

The existential over SBox gathers a collection of values defined purely in terms of their Show interface
and an opaque pointer, no other information is available about the values and they can’t be accessed or
unpacked in any other way.

Passing around existential types allows us to hide information from consumers of data types and
restrict the behavior that functions can use. Passing records around with existential variables allows a
type to be “bundled” with a fixed set of functions that operate over its hidden internals.

12.6 Impredicative Types
Although extremely brittle, GHC also has limited support for impredicative polymorphism which allows
instantiating type variable with a polymorphic type. Implied is that this loosens the restriction that
quantifiers must precede arrow types and now they may be placed inside of type-constructors.

-- Can't unify (Int ~ Char)

revUni :: forall a. Maybe ([a] -> [a]) -> Maybe ([Int], [Char])
revUni (Just g) = Just (g [3], g "hello")
revUni Nothing = Nothing

{-# LANGUAGE ImpredicativeTypes #-}

-- Uses higher-ranked polymorphism.
f :: (forall a. [a] -> a) -> (Int, Char)
f get = (get [1,2], get ['a', 'b', 'c'])

-- Uses impredicative polymorphism.
g :: Maybe (forall a. [a] -> a) -> (Int, Char)
g Nothing = (0, '0')
g (Just get) = (get [1,2], get ['a','b','c'])

Use of this extension is very rare, and there is some consideration that -XImpredicativeTypes is funda-
mentally broken. Although GHC is very liberal about telling us to enable it when one accidentally makes

191 QUANTIFICATION

a typo in a type signature!
Some notable trivia, the ($) operator is wired into GHC in a very special way as to allow impredicative

instantiation of runST to be applied via ($) by special-casing the ($) operator only when used for the
ST monad.

For example if we define a function apply which should behave identically to ($) we’ll get an error
about polymorphic instantiation even though they are defined identically!

{-# LANGUAGE RankNTypes #-}

import Control.Monad.ST

f `apply` x = f x

foo :: (forall s. ST s a) -> a
foo st = runST $ st

bar :: (forall s. ST s a) -> a
bar st = runST `apply` st

Couldn't match expected type `forall s. ST s a'
with actual type `ST s0 a'

In the second argument of `apply', namely `st'
In the expression: runST `apply` st
In an equation for `bar': bar st = runST `apply` st

See:

• SPJ Notes on $

12.7 Scoped Type Variables
Normally the type variables used within the toplevel signature for a function are only scoped to the type-
signature and not the body of the function and its rigid signatures over terms and let/where clauses. En-
abling -XScopedTypeVariables loosens this restriction allowing the type variables mentioned in the toplevel
to be scoped within the value-level body of a function and all signatures contained therein.

{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE ScopedTypeVariables #-}

poly :: forall a b c. a -> b -> c -> (a, a)
poly x y z = (f x y, f x z)
where

-- second argument is universally quantified from inference
-- f :: forall t0 t1. t0 -> t1 -> t0
f x' _ = x'

mono :: forall a b c. a -> b -> c -> (a, a)

https://www.haskell.org/pipermail/glasgow-haskell-users/2010-November/019431.html

QUANTIFICATION 192

mono x y z = (f x y, f x z)
where

-- b is not implicitly universally quantified because it is in scope
f :: a -> b -> a
f x' _ = x'

example :: IO ()
example = do
x :: [Int] <- readLn
print x

Chapter 13

GADTs

Generalized Algebraic Data types (GADTs) are an extension to algebraic datatypes that allow us to
qualify the constructors to datatypes with type equality constraints, allowing a class of types that are not
expressible using vanilla ADTs.

-XGADTs implicitly enables an alternative syntax for datatype declarations (-XGADTSyntax) such that
the following declarations are equivalent:

-- Vanilla
data List a
= Empty
| Cons a (List a)

-- GADTSyntax
data List a where
Empty :: List a
Cons :: a -> List a -> List a

For an example use consider the data type Term , we have a term in which we Succ which takes a
Term parameterized by a which spans all types. Problems arise between the clash whether (a ~ Bool)

or (a ~ Int) when trying to write the evaluator.

data Term a
= Lit a
| Succ (Term a)
| IsZero (Term a)

-- can't be well-typed :(
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero i) = eval i == 0

And we admit the construction of meaningless terms which forces more error handling cases.

-- This is a valid type.
failure = Succ (Lit True)

193

GADTS 194

Using a GADT we can express the type invariants for our language (i.e. only type-safe expressions are
representable). Pattern matching on this GADT then carries type equality constraints without the need
for explicit tags.

{-# Language GADTs #-}

data Term a where
Lit :: a -> Term a
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

eval :: Term a -> a
eval (Lit i) = i -- Term a
eval (Succ t) = 1 + eval t -- Term (a ~ Int)
eval (IsZero i) = eval i == 0 -- Term (a ~ Int)
eval (If b e1 e2) = if eval b then eval e1 else eval e2 -- Term (a ~ Bool)

example :: Int
example = eval (Succ (Succ (Lit 3)))

This time around:

-- This is rejected at compile-time.
failure = Succ (Lit True)

Explicit equality constraints (a ~ b) can be added to a function’s context. For example the following
expand out to the same types.

f :: a -> a -> (a, a)
f :: (a ~ b) => a -> b -> (a,b)

(Int ~ Int) => ...
(a ~ Int) => ...
(Int ~ a) => ...
(a ~ b) => ...
(Int ~ Bool) => ... -- Will not typecheck.

This is effectively the implementation detail of what GHC is doing behind the scenes to implement
GADTs (implicitly passing and threading equality terms around). If we wanted we could do the same
setup that GHC does just using equality constraints and existential quantification. Indeed, the internal
representation of GADTs is as regular algebraic datatypes that carry coercion evidence as arguments.

195 GADTS

{-# LANGUAGE GADTs #-}
{-# LANGUAGE ExistentialQuantification #-}

-- Using Constraints
data Exp a
= (a ~ Int) => LitInt a
| (a ~ Bool) => LitBool a
| forall b. (b ~ Bool) => If (Exp b) (Exp a) (Exp a)

-- Using GADTs
-- data Exp a where
-- LitInt :: Int -> Exp Int
-- LitBool :: Bool -> Exp Bool
-- If :: Exp Bool -> Exp a -> Exp a -> Exp a

eval :: Exp a -> a
eval e = case e of
LitInt i -> i
LitBool b -> b
If b tr fl -> if eval b then eval tr else eval fl

In the presence of GADTs inference becomes intractable in many cases, often requiring an explicit
annotation. For example f can either have T a -> [a] or T a -> [Int] and neither is principal.

data T :: * -> * where
T1 :: Int -> T Int
T2 :: T a

f (T1 n) = [n]
f T2 = []

13.1 Kind Signatures
Haskell’s kind system (i.e. the “type of the types”) is a system consisting the single kind * and an arrow
kind -> .

� : *
| � -> �

Int :: *
Maybe :: * -> *
Either :: * -> * -> *

GADTS 196

There are in fact some extensions to this system that will be covered later (see: PolyKinds and
Unboxed types in later sections) but most kinds in everyday code are simply either stars or arrows.

With the KindSignatures extension enabled we can now annotate top level type signatures with their
explicit kinds, bypassing the normal kind inference procedures.

{-# LANGUAGE KindSignatures #-}

id :: forall (a :: *). a -> a
id x = x

On top of default GADT declaration we can also constrain the parameters of the GADT to specific
kinds. For basic usage Haskell’s kind inference can deduce this reasonably well, but combined with some
other type system extensions that extend the kind system this becomes essential.

{-# Language GADTs #-}
{-# LANGUAGE KindSignatures #-}

data Term a :: * where
Lit :: a -> Term a
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

data Vec :: * -> * -> * where
Nil :: Vec n a
Cons :: a -> Vec n a -> Vec n a

data Fix :: (* -> *) -> * where
In :: f (Fix f) -> Fix f

13.2 Void
The Void type is the type with no inhabitants. It unifies only with itself.

Using a newtype wrapper we can create a type where recursion makes it impossible to construct an
inhabitant.

-- Void :: Void -> Void
newtype Void = Void Void

Or using -XEmptyDataDecls we can also construct the uninhabited type equivalently as a data declaration
with no constructors.

data Void

The only inhabitant of both of these types is a diverging term like (undefined).

197 GADTS

13.3 Phantom Types
Phantom types are parameters that appear on the left hand side of a type declaration but which are not
constrained by the values of the types inhabitants. They are effectively slots for us to encode additional
information at the type-level.

import Data.Void

data Foo tag a = Foo a

combine :: Num a => Foo tag a -> Foo tag a -> Foo tag a
combine (Foo a) (Foo b) = Foo (a+b)

-- All identical at the value level, but differ at the type level.
a :: Foo () Int
a = Foo 1

b :: Foo t Int
b = Foo 1

c :: Foo Void Int
c = Foo 1

-- () ~ ()
example1 :: Foo () Int
example1 = combine a a

-- t ~ ()
example2 :: Foo () Int
example2 = combine a b

-- t0 ~ t1
example3 :: Foo t Int
example3 = combine b b

-- Couldn't match type `t' with `Void'
example4 :: Foo t Int
example4 = combine b c

Notice the type variable tag does not appear in the right hand side of the declaration. Using this
allows us to express invariants at the type-level that need not manifest at the value-level. We’re effectively
programming by adding extra information at the type-level.

Consider the case of using newtypes to statically distinguish between plaintext and cryptotext.

newtype Plaintext = Plaintext Text
newtype Cryptotext = Cryptotext Text

encrypt :: Key -> Plaintext -> Cryptotext
decrypt :: Key -> Cryptotext -> Plaintext

GADTS 198

Using phantom types we use an extra parameter.

import Data.Text

data Cryptotext
data Plaintext

data Msg a = Msg Text

encrypt :: Msg Plaintext -> Msg Cryptotext
encrypt = undefined

decrypt :: Msg Cryptotext -> Msg Plaintext
decrypt = undefined

Using -XEmptyDataDecls can be a powerful combination with phantom types that contain no value
inhabitants and are “anonymous types”.

{-# LANGUAGE EmptyDataDecls #-}

data Token a

The tagged library defines a similar Tagged newtype wrapper.

13.4 Typelevel Operations
With a richer language for datatypes we can express terms that witness the relationship between terms in
the constructors, for example we can now express a term which expresses propositional equality between
two types.

The type Eql a b is a proof that types a and b are equal, by pattern matching on the single Refl
constructor we introduce the equality constraint into the body of the pattern match.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE ExplicitForAll #-}

-- a � b
data Eql a b where
Refl :: Eql a a

-- Congruence
-- (f : A → B) {x y} → x � y → f x � f y
cong :: Eql a b -> Eql (f a) (f b)
cong Refl = Refl

-- Symmetry
-- {a b : A} → a � b → a � b
sym :: Eql a b -> Eql b a

http://hackage.haskell.org/package/tagged

199 GADTS

sym Refl = Refl

-- Transitivity
-- {a b c : A} → a � b → b � c → a � c
trans :: Eql a b -> Eql b c -> Eql a c
trans Refl Refl = Refl

-- Coerce one type to another given a proof of their equality.
-- {a b : A} → a � b → a → b
castWith :: Eql a b -> a -> b
castWith Refl = id

-- Trivial cases
a :: forall n. Eql n n
a = Refl

b :: forall. Eql () ()
b = Refl

As of GHC 7.8 these constructors and functions are included in the Prelude in the Data.Type.Equality
module.

http://hackage.haskell.org/package/base-4.7.0.0/docs/Data-Type-Equality.html

GADTS 200

Chapter 14

Interpreters

The lambda calculus forms the theoretical and practical foundation for many languages. At the heart of
every calculus is three components:

• Var - A variable
• Lam - A lambda abstraction
• App - An application

There are many different ways of modeling these constructions and data structure representations, but
they all more or less contain these three elements. For example, a lambda calculus that uses String names
on lambda binders and variables might be written like the following:

type Name = String

data Exp
= Var Name
| Lam Name Exp
| App Exp Exp

A lambda expression in which all variables that appear in the body of the expression are referenced in
an outer lambda binder is said to be closed while an expression with unbound free variables is open.

14.1 HOAS
Higher Order Abstract Syntax (HOAS) is a technique for implementing the lambda calculus in a language
where the binders of the lambda expression map directly onto lambda binders of the host language (
i.e. Haskell) to give us substitution machinery in our custom language by exploiting Haskell’s implemen-
tation.

201

INTERPRETERS 202

{-# LANGUAGE GADTs #-}

data Expr a where
Con :: a -> Expr a
Lam :: (Expr a -> Expr b) -> Expr (a -> b)
App :: Expr (a -> b) -> Expr a -> Expr b

i :: Expr (a -> a)
i = Lam (\x -> x)

k :: Expr (a -> b -> a)
k = Lam (\x -> Lam (\y -> x))

s :: Expr ((a -> b -> c) -> (a -> b) -> (a -> c))
s = Lam (\x -> Lam (\y -> Lam (\z -> App (App x z) (App y z))))

eval :: Expr a -> a
eval (Con v) = v
eval (Lam f) = \x -> eval (f (Con x))
eval (App e1 e2) = (eval e1) (eval e2)

skk :: Expr (a -> a)
skk = App (App s k) k

example :: Integer
example = eval skk 1
-- 1

Pretty printing HOAS terms can also be quite complicated since the body of the function is under a
Haskell lambda binder.

14.2 PHOAS
A slightly different form of HOAS called PHOAS uses lambda datatype parameterized over the binder
type. In this form evaluation requires unpacking into a separate Value type to wrap the lambda expression.

{-# LANGUAGE RankNTypes #-}

data ExprP a
= VarP a
| AppP (ExprP a) (ExprP a)
| LamP (a -> ExprP a)
| LitP Integer

data Value
= VLit Integer
| VFun (Value -> Value)

203 INTERPRETERS

fromVFun :: Value -> (Value -> Value)
fromVFun val = case val of
VFun f -> f
_ -> error "not a function"

fromVLit :: Value -> Integer
fromVLit val = case val of
VLit n -> n
_ -> error "not an integer"

newtype Expr = Expr { unExpr :: forall a . ExprP a }

eval :: Expr -> Value
eval e = ev (unExpr e) where
ev (LamP f) = VFun(ev . f)
ev (VarP v) = v
ev (AppP e1 e2) = fromVFun (ev e1) (ev e2)
ev (LitP n) = VLit n

i :: ExprP a
i = LamP (\a -> VarP a)

k :: ExprP a
k = LamP (\x -> LamP (\y -> VarP x))

s :: ExprP a
s = LamP (\x -> LamP (\y -> LamP (\z -> AppP (AppP (VarP x) (VarP z)) (AppP (VarP y) (VarP z)))))

skk :: ExprP a
skk = AppP (AppP s k) k

example :: Integer
example = fromVLit $ eval $ Expr (AppP skk (LitP 3))

See:

• PHOAS
• Encoding Higher-Order Abstract Syntax with Parametric Polymorphism

14.3 Final Interpreters
Using typeclasses we can implement a final interpreter which models a set of extensible terms using
functions bound to typeclasses rather than data constructors. Instances of the typeclass form interpreters
over these terms.

For example we can write a small language that includes basic arithmetic, and then retroactively
extend our expression language with a multiplication operator without changing the base. At the same
time our interpreter logic remains invariant under extension with new expressions.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

http://adam.chlipala.net/papers/PhoasICFP08/PhoasICFP08Talk.pdf
http://www.seas.upenn.edu/~sweirich/papers/itabox/icfp-published-version.pdf

INTERPRETERS 204

{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE NoMonomorphismRestriction #-}

class Expr repr where
lit :: Int -> repr
neg :: repr -> repr
add :: repr -> repr -> repr
mul :: repr -> repr -> repr

instance Expr Int where
lit n = n
neg a = -a
add a b = a + b
mul a b = a * b

instance Expr String where
lit n = show n
neg a = "(-" ++ a ++ ")"
add a b = "(" ++ a ++ " + " ++ b ++ ")"
mul a b = "(" ++ a ++ " * " ++ b ++ ")"

class BoolExpr repr where
eq :: repr -> repr -> repr
tr :: repr
fl :: repr

instance BoolExpr Int where
eq a b = if a == b then tr else fl
tr = 1
fl = 0

instance BoolExpr String where
eq a b = "(" ++ a ++ " == " ++ b ++ ")"
tr = "true"
fl = "false"

eval :: Int -> Int
eval = id

render :: String -> String
render = id

expr :: (BoolExpr repr, Expr repr) => repr
expr = eq (add (lit 1) (lit 2)) (lit 3)

result :: Int
result = eval expr
-- 1

string :: String
string = render expr
-- "((1 + 2) == 3)"

205 INTERPRETERS

14.4 Finally Tagless
Writing an evaluator for the lambda calculus can likewise also be modeled with a final interpreter and a
Identity functor.

import Prelude hiding (id)

class Expr rep where
lam :: (rep a -> rep b) -> rep (a -> b)
app :: rep (a -> b) -> (rep a -> rep b)
lit :: a -> rep a

newtype Interpret a = R { reify :: a }

instance Expr Interpret where
lam f = R $ reify . f . R
app f a = R $ reify f $ reify a
lit = R

eval :: Interpret a -> a
eval e = reify e

e1 :: Expr rep => rep Int
e1 = app (lam (\x -> x)) (lit 3)

e2 :: Expr rep => rep Int
e2 = app (lam (\x -> lit 4)) (lam $ \x -> lam $ \y -> y)

example1 :: Int
example1 = eval e1
-- 3

example2 :: Int
example2 = eval e2
-- 4

See: Typed Tagless Interpretations and Typed Compilation

14.5 Datatypes
The usual hand-wavy way of describing algebraic datatypes is to indicate the how natural correspondence
between sum types, product types, and polynomial expressions arises.

data Void -- 0
data Unit = Unit -- 1
data Sum a b = Inl a | Inr b -- a + b
data Prod a b = Prod a b -- a * b
type (->) a b = a -> b -- b ^ a

http://okmij.org/ftp/tagless-final/

INTERPRETERS 206

Intuitively it follows the notion that the cardinality of set of inhabitants of a type can always be given
as a function of the number of its holes. A product type admits a number of inhabitants as a function of
the product (i.e. cardinality of the Cartesian product), a sum type as the sum of its holes and a function
type as the exponential of the span of the domain and codomain.

-- 1 + A
data Maybe a = Nothing | Just a

Recursive types correspond to infinite series of these terms.

-- pseudocode

-- �X. 1 + X
data Nat a = Z | S Nat
Nat a = � a. 1 + a

= 1 + (1 + (1 + ...))

-- �X. 1 + A * X
data List a = Nil | Cons a (List a)
List a = � a. 1 + a * (List a)

= 1 + a + a^2 + a^3 + a^4 ...

-- �X. A + A*X*X
data Tree a f = Leaf a | Tree a f f
Tree a = � a. 1 + a * (List a)

= 1 + a^2 + a^4 + a^6 + a^8 ...

14.6 F-Algebras
The initial algebra approach differs from the final interpreter approach in that we now represent our terms
as algebraic datatypes and the interpreter implements recursion and evaluation occurs through pattern
matching.

type Algebra f a = f a -> a
type Coalgebra f a = a -> f a
newtype Fix f = Fix { unFix :: f (Fix f) }

cata :: Functor f => Algebra f a -> Fix f -> a
ana :: Functor f => Coalgebra f a -> a -> Fix f
hylo :: Functor f => Algebra f b -> Coalgebra f a -> a -> b

In Haskell a F-algebra is a functor f a together with a function f a -> a . A coalgebra reverses the
function. For a functor f we can form its recursive unrolling using the recursive Fix newtype wrapper.

207 INTERPRETERS

newtype Fix f = Fix { unFix :: f (Fix f) }

Fix :: f (Fix f) -> Fix f
unFix :: Fix f -> f (Fix f)

Fix f = f (f (f (f (f (f (...))))))

newtype T b a = T (a -> b)

Fix (T a)
Fix T -> a
(Fix T -> a) -> a
(Fix T -> a) -> a -> a
...

In this form we can write down a generalized fold/unfold function that are datatype generic and written
purely in terms of the recursing under the functor.

cata :: Functor f => Algebra f a -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix

ana :: Functor f => Coalgebra f a -> a -> Fix f
ana coalg = Fix . fmap (ana coalg) . coalg

We call these functions catamorphisms and anamorphisms. Notice especially that the types of these
two functions simply reverse the direction of arrows. Interpreted in another way they transform an
algebra/coalgebra which defines a flat structure-preserving mapping between Fix f f into a function
which either rolls or unrolls the fixpoint. What is particularly nice about this approach is that the
recursion is abstracted away inside the functor definition and we are free to just implement the flat
transformation logic!

For example a construction of the natural numbers in this form:

{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

type Algebra f a = f a -> a

type Coalgebra f a = a -> f a

newtype Fix f = Fix {unFix :: f (Fix f)}

-- catamorphism
cata :: Functor f => Algebra f a -> Fix f -> a

INTERPRETERS 208

cata alg = alg . fmap (cata alg) . unFix

-- anamorphism
ana :: Functor f => Coalgebra f a -> a -> Fix f
ana coalg = Fix . fmap (ana coalg) . coalg

-- hylomorphism
hylo :: Functor f => Algebra f b -> Coalgebra f a -> a -> b
hylo f g = cata f . ana g

type Nat = Fix NatF

data NatF a = S a | Z deriving (Eq, Show)

instance Functor NatF where
fmap f Z = Z
fmap f (S x) = S (f x)

plus :: Nat -> Nat -> Nat
plus n = cata phi
where

phi Z = n
phi (S m) = s m

times :: Nat -> Nat -> Nat
times n = cata phi
where

phi Z = z
phi (S m) = plus n m

int :: Nat -> Int
int = cata phi
where

phi Z = 0
phi (S f) = 1 + f

nat :: Integer -> Nat
nat = ana (psi Z S)
where

psi f _ 0 = f
psi _ f n = f (n -1)

z :: Nat
z = Fix Z

s :: Nat -> Nat
s = Fix . S

type Str = Fix StrF

data StrF x = Cons Char x | Nil

instance Functor StrF where

209 INTERPRETERS

fmap f (Cons a as) = Cons a (f as)
fmap f Nil = Nil

nil :: Str
nil = Fix Nil

cons :: Char -> Str -> Str
cons x xs = Fix (Cons x xs)

str :: Str -> String
str = cata phi
where
phi Nil = []
phi (Cons x xs) = x : xs

str' :: String -> Str
str' = ana (psi Nil Cons)
where
psi f _ [] = f
psi _ f (a : as) = f a as

map' :: (Char -> Char) -> Str -> Str
map' f = hylo g unFix
where
g Nil = Fix Nil
g (Cons a x) = Fix $ Cons (f a) x

type Tree a = Fix (TreeF a)

data TreeF a f = Leaf a | Tree a f f deriving (Show)

instance Functor (TreeF a) where
fmap f (Leaf a) = Leaf a
fmap f (Tree a b c) = Tree a (f b) (f c)

depth :: Tree a -> Int
depth = cata phi
where
phi (Leaf _) = 0
phi (Tree _ l r) = 1 + max l r

example1 :: Int
example1 = int (plus (nat 125) (nat 25))
-- 150

Or for example an interpreter for a small expression language that depends on a scoping dictionary.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleInstances #-}

INTERPRETERS 210

{-# LANGUAGE UndecidableInstances #-}

import Control.Applicative
import qualified Data.Map as M

type Algebra f a = f a -> a
type Coalgebra f a = a -> f a

newtype Fix f = Fix { unFix :: f (Fix f) }

cata :: Functor f => Algebra f a -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix

ana :: Functor f => Coalgebra f a -> a -> Fix f
ana coalg = Fix . fmap (ana coalg) . coalg

hylo :: Functor f => Algebra f b -> Coalgebra f a -> a -> b
hylo f g = cata f . ana g

type Id = String
type Env = M.Map Id Int

type Expr = Fix ExprF
data ExprF a
= Lit Int
| Var Id
| Add a a
| Mul a a
deriving (Show, Eq, Ord, Functor)

deriving instance Eq (f (Fix f)) => Eq (Fix f)
deriving instance Ord (f (Fix f)) => Ord (Fix f)
deriving instance Show (f (Fix f)) => Show (Fix f)

eval :: M.Map Id Int -> Fix ExprF -> Maybe Int
eval env = cata phi where
phi ex = case ex of

Lit c -> pure c
Var i -> M.lookup i env
Add x y -> liftA2 (+) x y
Mul x y -> liftA2 (*) x y

expr :: Expr
expr = Fix (Mul n (Fix (Add x y)))
where

n = Fix (Lit 10)
x = Fix (Var "x")
y = Fix (Var "y")

env :: M.Map Id Int
env = M.fromList [("x", 1), ("y", 2)]

compose :: (f (Fix f) -> c) -> (a -> Fix f) -> a -> c

211 INTERPRETERS

compose x y = x . unFix . y

example :: Maybe Int
example = eval env expr
-- Just 30

What is especially elegant about this approach is how naturally catamorphisms compose into efficient
composite transformations.

compose :: Functor f => (f (Fix f) -> c) -> (a -> Fix f) -> a -> c
compose f g = f . unFix . g

14.7 Recursion Schemes & The Morphism Zoo
Recursion schemes are a generally way of classifying a families of traversal algorithms that modify data
structures recursively. Recursion schemes give rise to a rich set of algebraic structures which can be
composed to devise all sorts of elaborate term rewrite systems. Most applications of recursion schemes
occur in the context of graph rewriting or abstract syntax tree manipulation.

Several basic recursion schemes form the foundation of these rules. Grossly, a anamorphism is an
unfolding of a data structure into a list of terms, while a catamorphism is a is the refolding of a data
structure from a list of terms.

Name Type Signature
Catamorphism cata :: (a -> b -> b) -> b -> [a] -> b
Anamorphism ana :: (b -> Maybe (a, b)) -> b -> [a]

Paramorphism para :: (a -> ([a], b) -> b) -> b -> [a] -> b
Apomorphism apo :: (b -> (a, Either [a] b)) -> b -> [a]
Hylomorphism hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b

For a Fix point type over a type with a Functor instance for the parameter f we can write down the
recursion schemes as the following definitions:

-- | A fix-point type.
newtype Fix f = Fix { unFix :: f (Fix f) }

-- | Catamorphism or generic function fold.
cata :: Functor f => (f a -> a) -> (Fix f -> a)
cata f = f . fmap (cata f) . unFix

-- | Anamorphism or generic function unfold.
ana :: Functor f => (a -> f a) -> (a -> Fix f)
ana f = Fix . fmap (ana f) . f

-- | Hylomorphism
hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
hylo f g = h where h = f . fmap h . g

INTERPRETERS 212

-- Paramorphism
para :: Functor f => (f (Fix f, t) -> t) -> Fix f -> t
para f (Fix x) = psi (fmap l x) where

l x = (x, para f x)

One can also construct monadic versions of these functions which have a result type inside of a monad.
Instead of using function composition we use Kleisi composition.

-- Monadic catamorphism
cataM :: (Traversable f, Monad m) => (f a -> m a) -> Fix f -> m a
cataM f = f <=< traverse (cataM f) . unfix

The library recursion-schemes implements these basic recursion schemes as well as whole family of
higher-order combinators off the shelf. These are implemented in terms of two typeclases Recursive and
Corecursive which extend an instance of Functor with default methods for catamorphisms and anamor-

phisms. For the Fix type above these functions expand into the following definitions:

class Functor t => Recursive t where
project :: t -> t t
cata :: (t a -> a) -> t -> a
cata f = c where c = f . fmap c . project

class Functor t => Corecursive t where
embed :: t -> t t
ana :: (a -> t a) -> a -> t
ana g = a where a = embed . fmap a . g

-- Additional ListF helper
data ListF a b = Nil | Cons a b

The canonical example of a catamorphism is the factorial function which is a composition of a coalgebra
which creates a list from n to 1 and an algebra which multiplies the resulting list to a single result:

import Data.Functor.Foldable

factorial :: Int -> Int
factorial = hylo alg coalg
where

coalg :: Int -> ListF Int Int
coalg m

| m <= 1 = Nil
| otherwise = Cons m (m - 1)

alg :: ListF Int Int -> Int
alg Nil = 1
alg (Cons a x) = a * x

213 INTERPRETERS

Another example is unfolding of lambda calculus to perform a substitution over a variable. We can
define a catamoprhism for traversing over the AST.

{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Control.Monad hiding (forM_, mapM, sequence)
import qualified Data.Map as M
import Data.Traversable
import Prelude hiding (mapM)

newtype Fix (f :: * -> *) = Fix {outF :: f (Fix f)}

-- Catamorphism
cata :: Functor f => (f a -> a) -> Fix f -> a
cata f = f . fmap (cata f) . outF

-- Monadic catamorphism
cataM :: (Traversable f, Monad m) => (f a -> m a) -> Fix f -> m a
cataM f = f <=< mapM (cataM f) . outF

data ExprF r
= EVar String
| EApp r r
| ELam r r
deriving (Show, Eq, Ord, Functor)

type Expr = Fix ExprF

instance Show (Fix ExprF) where
show (Fix f) = show f

instance Eq (Fix ExprF) where
Fix x == Fix y = x == y

instance Ord (Fix ExprF) where
compare (Fix x) (Fix y) = compare x y

mkApp :: Fix ExprF -> Fix ExprF -> Fix ExprF
mkApp x y = Fix (EApp x y)

mkVar :: String -> Fix ExprF
mkVar x = Fix (EVar x)

mkLam :: Fix ExprF -> Fix ExprF -> Fix ExprF
mkLam x y = Fix (ELam x y)

i :: Fix ExprF
i = mkLam (mkVar "x") (mkVar "x")

k :: Fix ExprF

INTERPRETERS 214

k = mkLam (mkVar "x") $ mkLam (mkVar "y") $ (mkVar "x")

subst :: M.Map String (ExprF Expr) -> Expr -> Expr
subst env = cata alg
where

alg (EVar x) | Just e <- M.lookup x env = Fix e
alg e = Fix e

Another use case would be to collect the free variables inside of the AST. This example use the
recursion-schemes library.

{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE TypeFamilies #-}

import Data.Functor.Foldable

type Var = String

data Exp
= Var Var
| App Exp Exp
| Lam [Var] Exp
deriving (Show)

data ExpF a
= VarF Var
| AppF a a
| LamF [Var] a
deriving (Functor)

type instance Base Exp = ExpF

instance Recursive Exp where
project (Var a) = VarF a
project (App a b) = AppF a b
project (Lam a b) = LamF a b

instance Corecursive Exp where
embed (VarF a) = Var a
embed (AppF a b) = App a b
embed (LamF a b) = Lam a b

fvs :: Exp -> [Var]
fvs = cata phi
where

phi (VarF a) = [a]
phi (AppF a b) = a ++ b
phi (LamF a b) = foldr (filter . (/=)) a b

See:

215 INTERPRETERS

• recursion-schemes

14.8 Hint and Mueval
GHC itself can actually interpret arbitrary Haskell source on the fly by hooking into the GHC’s bytecode
interpreter (the same used for GHCi). The hint package allows us to parse, typecheck, and evaluate
arbitrary strings into arbitrary Haskell programs and evaluate them.

import Language.Haskell.Interpreter

foo :: Interpreter String
foo = eval "(\\x -> x) 1"

example :: IO (Either InterpreterError String)
example = runInterpreter foo

This is generally not a wise thing to build a library around, unless of course the purpose of the program
is itself to evaluate arbitrary Haskell code (something like an online Haskell shell or the likes).

Both hint and mueval do effectively the same task, designed around slightly different internals of the
GHC Api.

See:

• hint
• mueval

http://hackage.haskell.org/package/recursion-schemes
http://hackage.haskell.org/package/mueval
http://hackage.haskell.org/package/mueval

INTERPRETERS 216

Chapter 15

Testing

Unit testing frameworks are an important component in the Haskell ecosystem. Program correctness
is a central philosophical concept and unit testing forms the third part of the ecosystem that includes
strong type system and property testing. Generally speaking unit tests tend to be of less importance in
Haskell since the type system makes an enormous amount of invalid programs completely inexpressible
by construction. Unit tests tend to be written later in the development lifecycle and generally tend to be
about the core logic of the program and not the intermediate plumbing.

A prominent school of thought on Haskell library design tends to favor constructing programs built
around strong equational laws which guarantee strong invariants about program behavior under compo-
sition. Many of the testing tools are built around this style of design.

15.1 QuickCheck
Probably the most famous Haskell library, QuickCheck is a testing framework. This is a framework for
generating large random tests for arbitrary functions automatically based on the types of their arguments.

quickCheck :: Testable prop => prop -> IO ()
(==>) :: Testable prop => Bool -> prop -> Property
forAll :: (Show a, Testable prop) => Gen a -> (a -> prop) -> Property
choose :: Random a => (a, a) -> Gen a

import Test.QuickCheck

qsort :: [Int] -> [Int]
qsort [] = []
qsort (x:xs) = qsort lhs ++ [x] ++ qsort rhs

where lhs = filter (< x) xs
rhs = filter (>= x) xs

prop_maximum :: [Int] -> Property
prop_maximum xs = not (null xs) ==>

last (qsort xs) == maximum xs

main :: IO ()
main = quickCheck prop_maximum

217

TESTING 218

$ runhaskell qcheck.hs
*** Failed! Falsifiable (after 3 tests and 4 shrinks):
[0]
[1]

$ runhaskell qcheck.hs
+++ OK, passed 1000 tests.

The test data generator can be extended with custom types and refined with predicates that restrict
the domain of cases to test.

import Test.QuickCheck

data Color = Red | Green | Blue deriving Show

instance Arbitrary Color where
arbitrary = do

n <- choose (0,2) :: Gen Int
return $ case n of

0 -> Red
1 -> Green
2 -> Blue

example1 :: IO [Color]
example1 = sample' arbitrary
-- [Red,Green,Red,Blue,Red,Red,Red,Blue,Green,Red,Red]

See: QuickCheck: An Automatic Testing Tool for Haskell

15.2 SmallCheck
Like QuickCheck, SmallCheck is a property testing system but instead of producing random arbitrary test
data it instead enumerates a deterministic series of test data to a fixed depth.

smallCheck :: Testable IO a => Depth -> a -> IO ()
list :: Depth -> Series Identity a -> [a]
sample' :: Gen a -> IO [a]

�: list 3 series :: [Int]
[0,1,-1,2,-2,3,-3]

�: list 3 series :: [Double]
[0.0,1.0,-1.0,2.0,0.5,-2.0,4.0,0.25,-0.5,-4.0,-0.25]

http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html

219 TESTING

�: list 3 series :: [(Int, String)]
[(0,""),(1,""),(0,"a"),(-1,""),(0,"b"),(1,"a"),(2,""),(1,"b"),(-1,"a"),(-2,""),(-1,"b"),(2,"a"),(-2,"a"),(2,"b"),(-2,"b")]

It is useful to generate test cases over all possible inputs of a program up to some depth.

import Test.SmallCheck

distrib :: Int -> Int -> Int -> Bool
distrib a b c = a * (b + c) == a * b + a * c

cauchy :: [Double] -> [Double] -> Bool
cauchy xs ys = (abs (dot xs ys))^2 <= (dot xs xs) * (dot ys ys)

failure :: [Double] -> [Double] -> Bool
failure xs ys = abs (dot xs ys) <= (dot xs xs) * (dot ys ys)

dot :: Num a => [a] -> [a] -> a
dot xs ys = sum (zipWith (*) xs ys)

main :: IO ()
main = do
putStrLn "Testing distributivity..."
smallCheck 25 distrib

putStrLn "Testing Cauchy-Schwarz..."
smallCheck 4 cauchy

putStrLn "Testing invalid Cauchy-Schwarz..."
smallCheck 4 failure

$ runhaskell smallcheck.hs
Testing distributivity...
Completed 132651 tests without failure.

Testing Cauchy-Schwarz...
Completed 27556 tests without failure.

Testing invalid Cauchy-Schwarz...
Failed test no. 349.
there exist [1.0] [0.5] such that
condition is false

Just like for QuickCheck we can implement series instances for our custom datatypes. For example
there is no default instance for Vector, so let’s implement one:

TESTING 220

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

import Test.SmallCheck
import Test.SmallCheck.Series
import Control.Applicative

import qualified Data.Vector as V

dot :: Num a => V.Vector a -> V.Vector a -> a
dot xs ys = V.sum (V.zipWith (*) xs ys)

cauchy :: V.Vector Double -> V.Vector Double -> Bool
cauchy xs ys = (abs (dot xs ys))^2 <= (dot xs xs) * (dot ys ys)

instance (Serial m a, Monad m) => Serial m (V.Vector a) where
series = V.fromList <$> series

main :: IO ()
main = smallCheck 4 cauchy

SmallCheck can also use Generics to derive Serial instances, for example to enumerate all trees of a
certain depth we might use:

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics
import Test.SmallCheck.Series

data Tree a = Null | Fork (Tree a) a (Tree a)
deriving (Show, Generic)

instance Serial m a => Serial m (Tree a)

example :: [Tree ()]
example = list 3 series

main = print example

15.3 QuickSpec
Using the QuickCheck arbitrary machinery we can also rather remarkably enumerate a large number of
combinations of functions to try and deduce algebraic laws from trying out inputs for small cases. Of
course the fundamental limitation of this approach is that a function may not exhibit any interesting
properties for small cases or for simple function compositions. So in general case this approach won’t
work, but practically it still quite useful.

221 TESTING

{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeOperators #-}

import Data.List
import Data.Typeable
import QuickSpec hiding (arith, bools, lists)
import Test.QuickCheck.Arbitrary

type Var k a = (Typeable a, Arbitrary a, CoArbitrary a, k a)

listCons :: forall a. Var Ord a => a -> Sig
listCons a =
background
["[]" `fun0` ([] :: [a]),

":" `fun2` ((:) :: a -> [a] -> [a])
]

lists :: forall a. Var Ord a => a -> [Sig]
lists a =

[-- Names to print arbitrary variables
funs',
funvars',
vars',
-- Ambient definitions
listCons a,
-- Expressions to deduce properties of
"sort" `fun1` (sort :: [a] -> [a]),
"map" `fun2` (map :: (a -> a) -> [a] -> [a]),
"id" `fun1` (id :: [a] -> [a]),
"reverse" `fun1` (reverse :: [a] -> [a]),
"minimum" `fun1` (minimum :: [a] -> a),
"length" `fun1` (length :: [a] -> Int),
"++" `fun2` ((++) :: [a] -> [a] -> [a])

]
where
funs' = funs (undefined :: a)
funvars' = vars ["f", "g", "h"] (undefined :: a -> a)
vars' = ["xs", "ys", "zs"] `vars` (undefined :: [a])

tvar :: A
tvar = undefined

main :: IO ()
main = quickSpec (lists tvar)

Running this we rather see it is able to deduce most of the laws for list functions.

$ runhaskell src/quickspec.hs
-- background functions --

TESTING 222

id :: A -> A
(:) :: A -> [A] -> [A]
(.) :: (A -> A) -> (A -> A) -> A -> A
[] :: [A]
-- variables --
f, g, h :: A -> A
xs, ys, zs :: [A]
== Equations about map ==

1: map f [] == []
2: map id xs == xs
3: map (f.g) xs == map f (map g xs)

== Equations about minimum ==
4: minimum [] == undefined

== Equations about (++) ==
5: xs++[] == xs
6: []++xs == xs
7: (xs++ys)++zs == xs++(ys++zs)

== Equations about sort ==
8: sort [] == []
9: sort (sort xs) == sort xs

== Equations about id ==
10: id xs == xs
== Equations about reverse ==
11: reverse [] == []
12: reverse (reverse xs) == xs
== Equations about several functions ==
13: minimum (xs++ys) == minimum (ys++xs)
14: length (map f xs) == length xs
15: length (xs++ys) == length (ys++xs)
16: sort (xs++ys) == sort (ys++xs)
17: map f (reverse xs) == reverse (map f xs)
18: minimum (sort xs) == minimum xs
19: minimum (reverse xs) == minimum xs
20: minimum (xs++xs) == minimum xs
21: length (sort xs) == length xs
22: length (reverse xs) == length xs
23: sort (reverse xs) == sort xs
24: map f xs++map f ys == map f (xs++ys)
25: reverse xs++reverse ys == reverse (ys++xs)

Keep in mind the rather remarkable fact that this is all deduced automatically from the types alone!

15.4 Tasty
Tasty is the commonly used unit testing framework. It combines all of the testing frameworks (Quickcheck,
SmallCheck, HUnit) into a common API for forming runnable batches of tests and collecting the results.

import Test.Tasty
import Test.Tasty.HUnit
import Test.Tasty.QuickCheck

223 TESTING

import qualified Test.Tasty.SmallCheck as SC

arith :: Integer -> Integer -> Property
arith x y = (x > 0) && (y > 0) ==> (x+y)^2 > x^2 + y^2

negation :: Integer -> Bool
negation x = abs (x^2) >= x

suite :: TestTree
suite = testGroup "Test Suite" [

testGroup "Units"
[testCase "Equality" $ True @=? True
, testCase "Assertion" $ assert $ (length [1,2,3]) == 3
],

testGroup "QuickCheck tests"
[testProperty "Quickcheck test" arith
],

testGroup "SmallCheck tests"
[SC.testProperty "Negation" negation
]

]

main :: IO ()
main = defaultMain suite

$ runhaskell TestSuite.hs
Unit tests
Units
Equality: OK
Assertion: OK

QuickCheck tests
Quickcheck test: OK

+++ OK, passed 100 tests.
SmallCheck tests
Negation: OK

11 tests completed

15.5 Silently
Often in the process of testing IO heavy code we’ll need to redirect stdout to compare it some known
quantity. The silently package allows us to capture anything done to stdout across any library inside of
IO block and return the result to the test runner.

capture :: IO a -> IO (String, a)

TESTING 224

import Test.Tasty
import Test.Tasty.HUnit
import System.IO.Silently

test :: Int -> IO ()
test n = print (n * n)

testCapture n = do
(stdout, result) <- capture (test n)
assert (stdout == show (n*n) ++ "\n")

suite :: TestTree
suite = testGroup "Test Suite" [

testGroup "Units"
[testCase "Equality" $ testCapture 10
]

]

main :: IO ()
main = defaultMain suite

Chapter 16

Type Families

Type families are a powerful extension the Haskell type system, developed in 2005, that provide type-
indexed data types and named functions on types. This allows a whole new level of computation to occur
at compile-time and opens an entire arena of type-level abstractions that were previously impossible to
express. Type families proved to be nearly as fruitful as typeclasses and indeed, many previous approaches
to type-level programming using classes are achieved much more simply with type families.

16.1 MultiParam Typeclasses
Resolution of vanilla Haskell 98 typeclasses proceeds via very simple context reduction that minimizes
interdependency between predicates, resolves superclasses, and reduces the types to head normal form.
For example:

(Eq [a], Ord [a]) => [a]
==> Ord a => [a]

If a single parameter typeclass expresses a property of a type (i.e. whether it’s in a class or not in
class) then a multiparameter typeclass expresses relationships between types. For example if we wanted
to express the relation that a type can be converted to another type we might use a class like:

{-# LANGUAGE MultiParamTypeClasses #-}

import Data.Char

class Convertible a b where
convert :: a -> b

instance Convertible Int Integer where
convert = toInteger

instance Convertible Int Char where
convert = chr

instance Convertible Char Int where
convert = ord

225

TYPE FAMILIES 226

Of course now our instances for Convertible Int are not unique anymore, so there no longer exists a
nice procedure for determining the inferred type of b from just a . To remedy this let’s add a functional
dependency a -> b , which tells GHC that an instance a uniquely determines the instance that b can be.
So we’ll see that our two instances relating Int to both Integer and Char conflict.

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}

import Data.Char

class Convertible a b | a -> b where
convert :: a -> b

instance Convertible Int Char where
convert = chr

instance Convertible Char Int where
convert = ord

Functional dependencies conflict between instance declarations:
instance Convertible Int Integer
instance Convertible Int Char

Now there’s a simpler procedure for determining instances uniquely and multiparameter typeclasses
become more usable and inferable again. Effectively a functional dependency | a -> b says that we can’t
define multiple multiparamater typeclass instances with the same a but different b .

�: convert (42 :: Int)
'*'
�: convert '*'
42

Now let’s make things not so simple. Turning on UndecidableInstances loosens the constraint on context
reduction that can only allow constraints of the class to become structural smaller than its head. As a
result implicit computation can now occur within in the type class instance search. Combined with a
type-level representation of Peano numbers we find that we can encode basic arithmetic at the type-level.

{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}

data Z

227 TYPE FAMILIES

data S n

type Zero = Z
type One = S Zero
type Two = S One
type Three = S Two
type Four = S Three

zero :: Zero
zero = undefined

one :: One
one = undefined

two :: Two
two = undefined

three :: Three
three = undefined

four :: Four
four = undefined

class Eval a where
eval :: a -> Int

instance Eval Zero where
eval _ = 0

instance Eval n => Eval (S n) where
eval m = 1 + eval (prev m)

class Pred a b | a -> b where
prev :: a -> b

instance Pred Zero Zero where
prev = undefined

instance Pred (S n) n where
prev = undefined

class Add a b c | a b -> c where
add :: a -> b -> c

instance Add Zero a a where
add = undefined

instance Add a b c => Add (S a) b (S c) where
add = undefined

f :: Three
f = add one two

TYPE FAMILIES 228

g :: S (S (S (S Z)))
g = add two two

h :: Int
h = eval (add three four)

If the typeclass contexts look similar to Prolog you’re not wrong, if one reads the contexts qualifier
(=>) backwards as turnstiles :- then it’s precisely the same equations.

add(0, A, A).
add(s(A), B, s(C)) :- add(A, B, C).

pred(0, 0).
pred(S(A), A).

This is kind of abusing typeclasses and if used carelessly it can fail to terminate or overflow at compile-
time. UndecidableInstances shouldn’t be turned on without careful forethought about what it implies.

<interactive>:1:1:
Context reduction stack overflow; size = 201

16.2 Type Families
Type families allows us to write functions in the type domain which take types as arguments which can
yield either types or values indexed on their arguments which are evaluated at compile-time in during
typechecking. Type families come in two varieties: data families and type synonym families.

• type families are named function on types
• data families are type-indexed data types

First let’s look at type synonym families, there are two equivalent syntactic ways of constructing them.
Either as associated type families declared within a typeclass or as standalone declarations at the toplevel.
The following forms are semantically equivalent, although the unassociated form is strictly more general:

-- (1) Unassociated form
type family Rep a
type instance Rep Int = Char
type instance Rep Char = Int

class Convertible a where
convert :: a -> Rep a

instance Convertible Int where
convert = chr

229 TYPE FAMILIES

instance Convertible Char where
convert = ord

-- (2) Associated form
class Convertible a where
type Rep a
convert :: a -> Rep a

instance Convertible Int where
type Rep Int = Char
convert = chr

instance Convertible Char where
type Rep Char = Int
convert = ord

Using the same example we used for multiparameter + functional dependencies illustration we see that
there is a direct translation between the type family approach and functional dependencies. These two
approaches have the same expressive power.

An associated type family can be queried using the :kind! command in GHCi.

�: :kind! Rep Int
Rep Int :: *
= Char
�: :kind! Rep Char
Rep Char :: *
= Int

Data families on the other hand allow us to create new type parameterized data constructors. Normally
we can only define typeclasses functions whose behavior results in a uniform result which is purely a result
of the typeclasses arguments. With data families we can allow specialized behavior indexed on the type.

For example if we wanted to create more complicated vector structures (bit-masked vectors, vectors
of tuples, …) that exposed a uniform API but internally handled the differences in their data layout we
can use data families to accomplish this:

{-# LANGUAGE TypeFamilies #-}

import qualified Data.Vector.Unboxed as V

data family Array a
data instance Array Int = IArray (V.Vector Int)
data instance Array Bool = BArray (V.Vector Bool)
data instance Array (a,b) = PArray (Array a) (Array b)
data instance Array (Maybe a) = MArray (V.Vector Bool) (Array a)

class IArray a where
index :: Array a -> Int -> a

TYPE FAMILIES 230

instance IArray Int where
index (IArray xs) i = xs V.! i

instance IArray Bool where
index (BArray xs) i = xs V.! i

-- Vector of pairs
instance (IArray a, IArray b) => IArray (a, b) where
index (PArray xs ys) i = (index xs i, index ys i)

-- Vector of missing values
instance (IArray a) => IArray (Maybe a) where
index (MArray bm xs) i =

case bm V.! i of
True -> Nothing
False -> Just $ index xs i

16.3 Injectivity
The type level functions defined by type-families are not necessarily injective, the function may map two
distinct input types to the same output type. This differs from the behavior of type constructors (which
are also type-level functions) which are injective.

For example for the constructor Maybe , Maybe t1 = Maybe t2 implies that t1 = t2 .

data Maybe a = Nothing | Just a
-- Maybe a ~ Maybe b implies a ~ b

type instance F Int = Bool
type instance F Char = Bool

-- F a ~ F b does not imply a ~ b, in general

16.4 Roles
Roles are a further level of specification for type variables parameters of datatypes.

• nominal
• representational

• phantom

They were added to the language to address a rather nasty and long-standing bug around the cor-
respondence between a newtype and its runtime representation. The fundamental distinction that roles
introduce is there are two notions of type equality. Two types are nominally equal when they have the
same name. This is the usual equality in Haskell or Core. Two types are representationally equal when
they have the same representation. (If a type is higher-kinded, all nominally equal instantiations lead to
representationally equal types.)

• nominal - Two types are the same.

231 TYPE FAMILIES

• representational - Two types have the same runtime representation.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}

newtype Age = MkAge {unAge :: Int}

type family Inspect x

type instance Inspect Age = Int

type instance Inspect Int = Bool

class Boom a where
boom :: a -> Inspect a

instance Boom Int where
boom = (== 0)

deriving instance Boom Age

-- GHC 7.6.3 exhibits undefined behavior
failure = boom (MkAge 3)
-- -6341068275333450897

Roles are normally inferred automatically, but with the RoleAnnotations extension they can be manually
annotated. Except in rare cases this should not be necessary although it is helpful to know what is going
on under the hood.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE RoleAnnotations #-}

data Nat = Zero | Suc Nat

type role Vec nominal representational
data Vec :: Nat -> * -> * where
Nil :: Vec Zero a
(:*) :: a -> Vec n a -> Vec (Suc n) a

type role App representational nominal
data App (f :: k -> *) (a :: k) = App (f a)

type role Mu nominal nominal
data Mu (f :: (k -> *) -> k -> *) (a :: k) = Roll (f (Mu f) a)

type role Proxy phantom
data Proxy (a :: k) = Proxy

TYPE FAMILIES 232

With:

coerce :: Coercible * a b => a -> b
class (~R#) k k a b => Coercible k a b

See:

• Data.Coerce
• Roles
• Roles: A New Feature of GHC

16.5 NonEmpty
Rather than having degenerate (and often partial) cases of many of the Prelude functions to accommodate
the null case of lists, it is sometimes preferable to statically enforce empty lists from even being constructed
as an inhabitant of a type.

infixr 5 :|, <|
data NonEmpty a = a :| [a]

head :: NonEmpty a -> a
toList :: NonEmpty a -> [a]
fromList :: [a] -> NonEmpty a

head :: NonEmpty a -> a
head ~(a :| _) = a

import Data.List.NonEmpty
import Prelude hiding (head, tail, foldl1)
import Data.Foldable (foldl1)

a :: NonEmpty Integer
a = fromList [1,2,3]
-- 1 :| [2,3]

b :: NonEmpty Integer
b = 1 :| [2,3]
-- 1 :| [2,3]

c :: NonEmpty Integer
c = fromList []
-- *** Exception: NonEmpty.fromList: empty list

https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Coerce.html#t:Coercible
https://ghc.haskell.org/trac/ghc/wiki/Roles
http://typesandkinds.wordpress.com/2013/08/15/roles-a-new-feature-of-ghc/

233 TYPE FAMILIES

d :: Integer
d = foldl1 (+) $ fromList [1..100]
-- 5050

16.6 Manual Proofs
One of most deep results in computer science, the Curry–Howard correspondence, is the relation that
logical propositions can be modeled by types and instantiating those types constitute proofs of these
propositions. Programs are proofs and proofs are programs.

Types Logic
A proposition
a : A proof
B(x) predicate
Void �
Unit �
A + B A � B
A × B A � B
A -> B A � B

In dependently typed languages we can exploit this result to its full extent, in Haskell we don’t have
the strength that dependent types provide but can still prove trivial results. For example, now we can
model a type level function for addition and provide a small proof that zero is an additive identity.

P 0 [base step]
�n. P n → P (1+n) [inductive step]

�n. P(n)

Axiom 1: a + 0 = a
Axiom 2: a + suc b = suc (a + b)

0 + suc a
= suc (0 + a) [by Axiom 2]
= suc a [Induction hypothesis]
�

Translated into Haskell our axioms are simply type definitions and recursing over the inductive datatype
constitutes the inductive step of our proof.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ExplicitForAll #-}

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence

TYPE FAMILIES 234

{-# LANGUAGE TypeOperators #-}

data Z
data S n

data SNat n where
Zero :: SNat Z
Succ :: SNat n -> SNat (S n)

data Eql a b where
Refl :: Eql a a

type family Add m n
type instance Add Z n = n
type instance Add (S m) n = S (Add m n)

add :: SNat n -> SNat m -> SNat (Add n m)
add Zero m = m
add (Succ n) m = Succ (add n m)

cong :: Eql a b -> Eql (f a) (f b)
cong Refl = Refl

-- �n. 0 + suc n = suc n
plus_suc :: forall n. SNat n

-> Eql (Add Z (S n)) (S n)
plus_suc Zero = Refl
plus_suc (Succ n) = cong (plus_suc n)

-- �n. 0 + n = n
plus_zero :: forall n. SNat n

-> Eql (Add Z n) n
plus_zero Zero = Refl
plus_zero (Succ n) = cong (plus_zero n)

Using the TypeOperators extension we can also use infix notation at the type-level.

data a :=: b where
Refl :: a :=: a

cong :: a :=: b -> (f a) :=: (f b)
cong Refl = Refl

type family (n :: Nat) :+ (m :: Nat) :: Nat
type instance Zero :+ m = m
type instance (Succ n) :+ m = Succ (n :+ m)

plus_suc :: forall n m. SNat n -> SNat m -> (n :+ (S m)) :=: (S (n :+ m))
plus_suc Zero m = Refl
plus_suc (Succ n) m = cong (plus_suc n m)

235 TYPE FAMILIES

16.7 Constraint Kinds
GHC’s implementation also exposes the predicates that bound quantifiers in Haskell as types themselves,
with the -XConstraintKinds extension enabled. Using this extension we work with constraints as first class
types.

Num :: * -> Constraint
Odd :: * -> Constraint

type T1 a = (Num a, Ord a)

The empty constraint set is indicated by () :: Constraint .
For a contrived example if we wanted to create a generic Sized class that carried with it constraints

on the elements of the container in question we could achieve this quite simply using type families.

{-# LANGUAGE ConstrainedClassMethods #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE TypeFamilies #-}

import Data.HashSet
import Data.Hashable
import GHC.Exts (Constraint)

type family Con a :: Constraint

type instance Con [a] = (Ord a, Eq a)

type instance Con (HashSet a) = (Hashable a)

class Sized a where
gsize :: Con a => a -> Int

instance Sized [a] where
gsize = length

instance Sized (HashSet a) where
gsize = size

One use-case of this is to capture the typeclass dictionary constrained by a function and reify it as a
value.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE KindSignatures #-}

TYPE FAMILIES 236

import GHC.Exts (Constraint)

data Dict :: Constraint -> * where
Dict :: (c) => Dict c

dShow :: Dict (Show a) -> a -> String
dShow Dict x = show x

dEqNum :: Dict (Eq a, Num a) -> a -> Bool
dEqNum Dict x = x == 0

fShow :: String
fShow = dShow Dict 10

fEqual :: Bool
fEqual = dEqNum Dict 0

16.8 TypeFamilyDependencies
Type families historically have not been injective, i.e. they are not guaranteed to maps distinct elements
of its arguments to the same element of its result. The syntax is similar to the multiparmater typeclass
functional dependencies in that the resulting type is uniquely determined by a set of the type families
parameters.

{-# LANGUAGE XTypeFamilyDependencies #-}

type family F a b c = (result :: k) | result -> a b c
type instance F Int Char Bool = Bool
type instance F Char Bool Int = Int
type instance F Bool Int Char = Char

See:

• Injective type families for Haskell

http://ics.p.lodz.pl/~stolarek/_media/pl:research:stolarek_peyton-jones_eisenberg_injectivity_extended.pdf

Chapter 17

Promotion

17.1 Higher Kinded Types
What are higher kinded types?

The kind system in Haskell is unique by contrast with most other languages in that it allows datatypes
to be constructed which take types and type constructor to other types. Such a system is said to support
higher kinded types.

All kind annotations in Haskell necessarily result in a kind * although any terms to the left may be
higher-kinded (* -> *).

The common example is the Monad which has kind * -> * . But we have also seen this higher-
kindedness in free monads.

data Free f a where
Pure :: a -> Free f a
Free :: f (Free f a) -> Free f a

data Cofree f a where
Cofree :: a -> f (Cofree f a) -> Cofree f a

Free :: (* -> *) -> * -> *
Cofree :: (* -> *) -> * -> *

For instance Cofree Maybe a for some monokinded type a models a non-empty list with Maybe :: * -> * .

-- Cofree Maybe a is a non-empty list
testCofree :: Cofree Maybe Int
testCofree = (Cofree 1 (Just (Cofree 2 Nothing)))

17.2 Kind Polymorphism
The regular value level function which takes a function and applies it to an argument is universally
generalized over in the usual Hindley-Milner way.

237

PROMOTION 238

app :: forall a b. (a -> b) -> a -> b
app f a = f a

But when we do the same thing at the type-level we see we lose information about the polymorphism
of the constructor applied.

-- TApp :: (* -> *) -> * -> *
data TApp f a = MkTApp (f a)

Turning on -XPolyKinds allows polymorphic variables at the kind level as well.

-- Default: (* -> *) -> * -> *
-- PolyKinds: (k -> *) -> k -> *
data TApp f a = MkTApp (f a)

-- Default: ((* -> *) -> (* -> *)) -> (* -> *)
-- PolyKinds: ((k -> *) -> (k -> *)) -> (k -> *)
data Mu f a = Roll (f (Mu f) a)

-- Default: * -> *
-- PolyKinds: k -> *
data Proxy a = Proxy

Using the polykinded Proxy type allows us to write down type class functions over constructors of
arbitrary kind arity.

{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}

data Proxy a = Proxy
data Rep = Rep

class PolyClass a where
foo :: Proxy a -> Rep
foo = const Rep

-- () :: *
-- [] :: * -> *
-- Either :: * -> * -> *

instance PolyClass ()
instance PolyClass []
instance PolyClass Either

239 PROMOTION

For example we can write down the polymorphic S K combinators at the type level now.

{-# LANGUAGE PolyKinds #-}

newtype I (a :: *) = I a
newtype K (a :: *) (b :: k) = K a
newtype Flip (f :: k1 -> k2 -> *) (x :: k2) (y :: k1) = Flip (f y x)

unI :: I a -> a
unI (I x) = x

unK :: K a b -> a
unK (K x) = x

unFlip :: Flip f x y -> f y x
unFlip (Flip x) = x

17.3 Data Kinds
The -XDataKinds extension allows us to refer to constructors at the value level and the type level. Consider
a simple sum type:

data S a b = L a | R b

-- S :: * -> * -> *
-- L :: a -> S a b
-- R :: b -> S a b

With the extension enabled we see that our type constructors are now automatically promoted so that
L or R can be viewed as both a data constructor of the type S or as the type L with kind S .

{-# LANGUAGE DataKinds #-}

data S a b = L a | R b

-- S :: * -> * -> *
-- L :: * -> S * *
-- R :: * -> S * *

Promoted data constructors can referred to in type signatures by prefixing them with a single quote.
Also of importance is that these promoted constructors are not exported with a module by default, but
type synonym instances can be created for the ticked promoted types and exported directly.

data Foo = Bar | Baz
type Bar = 'Bar
type Baz = 'Baz

PROMOTION 240

Combining this with type families we see we can write meaningful, type-level functions by lifting types
to the kind level.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}

import Prelude hiding (Bool(..))

data Bool = False | True

type family Not (a :: Bool) :: Bool

type instance Not True = False
type instance Not False = True

false :: Not True ~ False => a
false = undefined

true :: Not False ~ True => a
true = undefined

-- Fails at compile time.
-- Couldn't match type 'False with 'True
invalid :: Not True ~ True => a
invalid = undefined

17.4 Size-Indexed Vectors
Using this new structure we can create a Vec type which is parameterized by its length as well as its
element type now that we have a kind language rich enough to encode the successor type in the kind
signature of the generalized algebraic datatype.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

data Nat = Z | S Nat deriving (Eq, Show)

type Zero = Z
type One = S Zero
type Two = S One
type Three = S Two
type Four = S Three
type Five = S Four

241 PROMOTION

data Vec :: Nat -> * -> * where
Nil :: Vec Z a
Cons :: a -> Vec n a -> Vec (S n) a

instance Show a => Show (Vec n a) where
show Nil = "Nil"
show (Cons x xs) = "Cons " ++ show x ++ " (" ++ show xs ++ ")"

class FromList n where
fromList :: [a] -> Vec n a

instance FromList Z where
fromList [] = Nil

instance FromList n => FromList (S n) where
fromList (x:xs) = Cons x $ fromList xs

lengthVec :: Vec n a -> Nat
lengthVec Nil = Z
lengthVec (Cons x xs) = S (lengthVec xs)

zipVec :: Vec n a -> Vec n b -> Vec n (a,b)
zipVec Nil Nil = Nil
zipVec (Cons x xs) (Cons y ys) = Cons (x,y) (zipVec xs ys)

vec4 :: Vec Four Int
vec4 = fromList [0, 1, 2, 3]

vec5 :: Vec Five Int
vec5 = fromList [0, 1, 2, 3, 4]

example1 :: Nat
example1 = lengthVec vec4
-- S (S (S (S Z)))

example2 :: Vec Four (Int, Int)
example2 = zipVec vec4 vec4
-- Cons (0,0) (Cons (1,1) (Cons (2,2) (Cons (3,3) (Nil))))

So now if we try to zip two Vec types with the wrong shape then we get an error at compile-time
about the off-by-one error.

example2 = zipVec vec4 vec5
-- Couldn't match type 'S 'Z with 'Z
-- Expected type: Vec Four Int
-- Actual type: Vec Five Int

The same technique we can use to create a container which is statically indexed by an empty or
non-empty flag, such that if we try to take the head of an empty list we’ll get a compile-time error, or

PROMOTION 242

stated equivalently we have an obligation to prove to the compiler that the argument we hand to the head
function is non-empty.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}

data Size = Empty | NonEmpty

data List a b where
Nil :: List Empty a
Cons :: a -> List b a -> List NonEmpty a

head' :: List NonEmpty a -> a
head' (Cons x _) = x

example1 :: Int
example1 = head' (1 `Cons` (2 `Cons` Nil))

-- Cannot match type Empty with NonEmpty
example2 :: Int
example2 = head' Nil

Couldn't match type None with Many
Expected type: List NonEmpty Int
Actual type: List Empty Int

See:

• Giving Haskell a Promotion

17.5 Typelevel Numbers
GHC’s type literals can also be used in place of explicit Peano arithmetic.

GHC 7.6 is very conservative about performing reduction, GHC 7.8 is much less so and will can solve
many typelevel constraints involving natural numbers but sometimes still needs a little coaxing.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeOperators #-}

import GHC.TypeLits

data Vec :: Nat -> * -> * where

https://research.microsoft.com/en-us/people/dimitris/fc-kind-poly.pdf

243 PROMOTION

Nil :: Vec 0 a
Cons :: a -> Vec n a -> Vec (1 + n) a

-- GHC 7.6 will not reduce
-- vec3 :: Vec (1 + (1 + (1 + 0))) Int

vec3 :: Vec 3 Int
vec3 = 0 `Cons` (1 `Cons` (2 `Cons` Nil))

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}

import GHC.TypeLits
import Data.Type.Equality

data Foo :: Nat -> * where
Small :: (n <= 2) => Foo n
Big :: (3 <= n) => Foo n

Empty :: ((n == 0) ~ True) => Foo n
NonEmpty :: ((n == 0) ~ False) => Foo n

big :: Foo 10
big = Big

small :: Foo 2
small = Small

empty :: Foo 0
empty = Empty

nonempty :: Foo 3
nonempty = NonEmpty

See: Type-Level Literals

17.6 Typelevel Strings
Since GHC 8.0 we have been able to work with typelevel strings values represented at the typelevel as
Symbol with kind Symbol . The GHC.TypeLits module defines a set of a typeclases for lifting these values

to and from the value level and comparing and computing over the values at typelevel.

symbolVal :: forall n proxy. KnownSymbol n => proxy n -> String
type family AppendSymbol (m :: Symbol) (n :: Symbol) :: Symbol

http://www.haskell.org/ghc/docs/7.8.2/html/users_guide/type-level-literals.html

PROMOTION 244

type family CmpSymbol (m :: Symbol) (n :: Symbol) :: Ordering
sameSymbol :: (KnownSymbol a, KnownSymbol b) => Proxy a -> Proxy b -> Maybe (a :~: b)

These can be used to tag specific data at the typelevel with compile-time information encoded in the
strings. For example we can construct a simple unit system which allows us to attach units to numerical
quantities and perform basic dimensional analysis.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}

import GHC.TypeLits

data Tagged (l :: Symbol) a = Tag a
deriving (Show)

m :: Tagged "m" Double
m = Tag 10.0

s :: Tagged "s" Double
s = Tag 20.0

divUnits ::
Fractional a =>
Tagged u1 a ->
Tagged u2 a ->
Tagged (u1 `AppendSymbol` u2) a

divUnits (Tag x) (Tag y) = Tag (x / y)

addUnits ::
(Num a, u1 `CmpSymbol` u2 ~ 'EQ) =>
Tagged u1 a ->
Tagged u2 a ->
Tagged u1 a

addUnits (Tag x) (Tag y) = Tag (x + y)

17.7 Custom Errors
As of GHC 8.0 we have the capacity to provide custom type error using type families. The messages
themselves hook into GHC and are expressed using the small datatype found in GHC.TypeLits

data ErrorMessage where
Text :: Symbol -> ErrorMessage
ShowType :: t -> ErrorMessage

-- Put two messages next to each other

245 PROMOTION

(:<>:) :: ErrorMessage -> ErrorMessage -> ErrorMessage

-- Put two messages on top of each other
(:$$:) :: ErrorMessage -> ErrorMessage -> ErrorMessage

If one of these expressions is found in the signature of an expression GHC reports an error message of
the form:

example.hs:1:1: error:
• My custom error message line 1.
• My custom error message line 2.
• In the expression: example

In an equation for ‘foo’: foo = ECoerce (EFloat 3) (EInt 4)

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits

instance-- Error Message

TypeError
(Text "Equality is not defined for functions"

:$$: (ShowType a :<>: Text " -> " :<>: ShowType b)
) =>

-- Instance head
Eq (a -> b)
where
(==) = undefined

-- Fail when we try to equate two functions
example = id == id

A less contrived example would be creating a type-safe embedded DSL that enforces invariants about
the semantics at the type-level. We’ve been able to do this sort of thing using GADTs and type-families
for a while but the error reporting has been horrible. With 8.0 we can have type-families that emit useful
type errors that reflect what actually goes wrong and integrate this inside of GHC.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

PROMOTION 246

import GHC.TypeLits

type family Coerce a b where
Coerce Int Int = Int
Coerce Float Float = Float
Coerce Int Float = Float
Coerce Float Int = TypeError (Text "Cannot cast to smaller type")

data Expr a where
EInt :: Int -> Expr Int
EFloat :: Float -> Expr Float
ECoerce :: Expr b -> Expr c -> Expr (Coerce b c)

foo :: Expr Int
foo = ECoerce (EFloat 3) (EInt 4)

17.8 Type Equality
Continuing with the theme of building more elaborate proofs in Haskell, GHC 7.8 recently shipped with the
Data.Type.Equality module which provides us with an extended set of type-level operations for expressing

the equality of types as values, constraints, and promoted booleans.

(~) :: k -> k -> Constraint
(==) :: k -> k -> Bool
(<=) :: Nat -> Nat -> Constraint
(<=?) :: Nat -> Nat -> Bool
(+) :: Nat -> Nat -> Nat
(-) :: Nat -> Nat -> Nat
(*) :: Nat -> Nat -> Nat
(^) :: Nat -> Nat -> Nat

(:~:) :: k -> k -> *
Refl :: a1 :~: a1
sym :: (a :~: b) -> b :~: a
trans :: (a :~: b) -> (b :~: c) -> a :~: c
castWith :: (a :~: b) -> a -> b
gcastWith :: (a :~: b) -> (a ~ b => r) -> r

With this we have a much stronger language for writing restrictions that can be checked at a compile-
time, and a mechanism that will later allow us to write more advanced proofs.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}

247 PROMOTION

{-# LANGUAGE ConstraintKinds #-}

import GHC.TypeLits
import Data.Type.Equality

type Not a b = ((b == a) ~ False)

restrictUnit :: Not () a => a -> a
restrictUnit = id

restrictChar :: Not Char a => a -> a
restrictChar = id

17.9 Proxies

Using kind polymorphism with phantom types allows us to express the Proxy type which is inhabited by
a single constructor with no arguments but with a polykinded phantom type variable which carries an
arbitrary type.

{-# LANGUAGE PolyKinds #-}

-- | A concrete, poly-kinded proxy type
data Proxy t = Proxy

import Data.Proxy

a :: Proxy ()
a = Proxy

b :: Proxy 3
b = Proxy

c :: Proxy "symbol"
c = Proxy

d :: Proxy Maybe
d = Proxy

e :: Proxy (Maybe ())
e = Proxy

In cases where we’d normally pass around a undefined as a witness of a typeclass dictionary, we can
instead pass a Proxy object which carries the phantom type without the need for the bottom. Using scoped
type variables we can then operate with the phantom parameter and manipulate wherever is needed.

PROMOTION 248

t1 :: a
t1 = (undefined :: a)

t2 :: Proxy a
t2 Proxy :: Proxy a

17.10 Promoted Syntax
We’ve seen constructors promoted using DataKinds, but just like at the value-level GHC also allows us
some syntactic sugar for list and tuples instead of explicit cons’ing and pair’ing. This is enabled with the
-XTypeOperators extension, which introduces list syntax and tuples of arbitrary arity at the type-level.

data HList :: [*] -> * where
HNil :: HList '[]
HCons :: a -> HList t -> HList (a ': t)

data Tuple :: (*,*) -> * where
Tuple :: a -> b -> Tuple '(a,b)

Using this we can construct all variety of composite type-level objects.

�: :kind 1
1 :: Nat

�: :kind "foo"
"foo" :: Symbol

�: :kind [1,2,3]
[1,2,3] :: [Nat]

�: :kind [Int, Bool, Char]
[Int, Bool, Char] :: [*]

�: :kind Just [Int, Bool, Char]
Just [Int, Bool, Char] :: Maybe [*]

�: :kind '("a", Int)
(,) Symbol *

�: :kind ['("a", Int), '("b", Bool)]
['("a", Int), '("b", Bool)] :: [(,) Symbol *]

17.11 Singleton Types
A singleton type is a type with a single value inhabitant. Singleton types can be constructed in a variety
of ways using GADTs or with data families.

249 PROMOTION

data instance Sing (a :: Nat) where
SZ :: Sing 'Z
SS :: Sing n -> Sing ('S n)

data instance Sing (a :: Maybe k) where
SNothing :: Sing 'Nothing
SJust :: Sing x -> Sing ('Just x)

data instance Sing (a :: Bool) where
STrue :: Sing True
SFalse :: Sing False

Promoted Naturals

Value-level Type-level Models
SZ Sing 'Z 0

SS SZ Sing ('S 'Z) 1

SS (SS SZ) Sing ('S ('S 'Z)) 2

Promoted Booleans

Value-level Type-level Models
SFalse Sing 'False False
STrue Sing 'True True

Promoted Maybe

Value-level Type-level Models
SJust a Sing (SJust 'a) Just a
SNothing Sing Nothing Nothing

Singleton types are an integral part of the small cottage industry of faking dependent types in Haskell,
i.e. constructing types with terms predicated upon values. Singleton types are a way of “cheating” by
modeling the map between types and values as a structural property of the type.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}

PROMOTION 250

{-# LANGUAGE UndecidableInstances #-}

import Data.Proxy
import GHC.Exts (Any)
import Prelude hiding (succ)

data Nat = Z | S Nat

-- kind-indexed data family
data family Sing (a :: k)

data instance Sing (a :: Nat) where
SZ :: Sing 'Z
SS :: Sing n -> Sing ('S n)

data instance Sing (a :: Maybe k) where
SNothing :: Sing 'Nothing
SJust :: Sing x -> Sing ('Just x)

data instance Sing (a :: Bool) where
STrue :: Sing True
SFalse :: Sing False

data Fin (n :: Nat) where
FZ :: Fin (S n)
FS :: Fin n -> Fin (S n)

data Vec a n where
Nil :: Vec a Z
Cons :: a -> Vec a n -> Vec a (S n)

class SingI (a :: k) where
sing :: Sing a

instance SingI Z where
sing = SZ

instance SingI n => SingI (S n) where
sing = SS sing

deriving instance Show Nat
deriving instance Show (SNat a)
deriving instance Show (SBool a)
deriving instance Show (Fin a)
deriving instance Show a => Show (Vec a n)

type family (m :: Nat) :+ (n :: Nat) :: Nat where
Z :+ n = n
S m :+ n = S (m :+ n)

type SNat (k :: Nat) = Sing k
type SBool (k :: Bool) = Sing k
type SMaybe (b :: a) (k :: Maybe a) = Sing k

251 PROMOTION

size :: Vec a n -> SNat n
size Nil = SZ
size (Cons x xs) = SS (size xs)

forget :: SNat n -> Nat
forget SZ = Z
forget (SS n) = S (forget n)

natToInt :: Integral n => Nat -> n
natToInt Z = 0
natToInt (S n) = natToInt n + 1

intToNat :: (Integral a, Ord a) => a -> Nat
intToNat 0 = Z
intToNat n = S $ intToNat (n - 1)

sNatToInt :: Num n => SNat x -> n
sNatToInt SZ = 0
sNatToInt (SS n) = sNatToInt n + 1

index :: Fin n -> Vec a n -> a
index FZ (Cons x _) = x
index (FS n) (Cons _ xs) = index n xs

test1 :: Fin (S (S (S Z)))
test1 = FS (FS FZ)

test2 :: Int
test2 = index FZ (1 `Cons` (2 `Cons` Nil))

test3 :: Sing ('Just ('S ('S Z)))
test3 = SJust (SS (SS SZ))

test4 :: Sing ('S ('S Z))
test4 = SS (SS SZ)

-- polymorphic constructor SingI
test5 :: Sing ('S ('S Z))
test5 = sing

The builtin singleton types provided in GHC.TypeLits have the useful implementation that type-level
values can be reflected to the value-level and back up to the type-level, albeit under an existential.

someNatVal :: Integer -> Maybe SomeNat
someSymbolVal :: String -> SomeSymbol

natVal :: KnownNat n => proxy n -> Integer
symbolVal :: KnownSymbol n => proxy n -> String

PROMOTION 252

{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}

import Data.Proxy
import GHC.TypeLits

a :: Integer
a = natVal (Proxy :: Proxy 1)
-- 1

b :: String
b = symbolVal (Proxy :: Proxy "foo")
-- "foo"

c :: Integer
c = natVal (Proxy :: Proxy (2 + 3))
-- 5

17.12 Closed Type Families
In the type families we’ve used so far (called open type families) there is no notion of ordering of the
equations involved in the type-level function. The type family can be extended at any point in the code
resolution simply proceeds sequentially through the available definitions. Closed type-families allow an
alternative declaration that allows for a base case for the resolution allowing us to actually write recursive
functions over types.

For example consider if we wanted to write a function which counts the arguments in the type of a
function and reifies at the value-level.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import Data.Proxy
import GHC.TypeLits

type family Count (f :: *) :: Nat where
Count (a -> b) = 1 + (Count b)
Count x = 1

type Fn1 = Int -> Int
type Fn2 = Int -> Int -> Int -> Int

fn1 :: Integer
fn1 = natVal (Proxy :: Proxy (Count Fn1))
-- 2

fn2 :: Integer

253 PROMOTION

fn2 = natVal (Proxy :: Proxy (Count Fn2))
-- 4

The variety of functions we can now write down are rather remarkable, allowing us to write meaningful
logic at the type level.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits
import Data.Proxy
import Data.Type.Equality

-- Type-level functions over type-level lists.

type family Reverse (xs :: [k]) :: [k] where
Reverse '[] = '[]
Reverse xs = Rev xs '[]

type family Rev (xs :: [k]) (ys :: [k]) :: [k] where
Rev '[] i = i
Rev (x ': xs) i = Rev xs (x ': i)

type family Length (as :: [k]) :: Nat where
Length '[] = 0
Length (x ': xs) = 1 + Length xs

type family If (p :: Bool) (a :: k) (b :: k) :: k where
If True a b = a
If False a b = b

type family Concat (as :: [k]) (bs :: [k]) :: [k] where
Concat a '[] = a
Concat '[] b = b
Concat (a ': as) bs = a ': Concat as bs

type family Map (f :: a -> b) (as :: [a]) :: [b] where
Map f '[] = '[]
Map f (x ': xs) = f x ': Map f xs

type family Sum (xs :: [Nat]) :: Nat where
Sum '[] = 0
Sum (x ': xs) = x + Sum xs

ex1 :: Reverse [1,2,3] ~ [3,2,1] => Proxy a
ex1 = Proxy

PROMOTION 254

ex2 :: Length [1,2,3] ~ 3 => Proxy a
ex2 = Proxy

ex3 :: (Length [1,2,3]) ~ (Length (Reverse [1,2,3])) => Proxy a
ex3 = Proxy

-- Reflecting type level computations back to the value level.
ex4 :: Integer
ex4 = natVal (Proxy :: Proxy (Length (Concat [1,2,3] [4,5,6])))
-- 6

ex5 :: Integer
ex5 = natVal (Proxy :: Proxy (Sum [1,2,3]))
-- 6

-- Couldn't match type ‘2’ with ‘1’
ex6 :: Reverse [1,2,3] ~ [3,1,2] => Proxy a
ex6 = Proxy

The results of type family functions need not necessarily be kinded as (*) either. For example using
Nat or Constraint is permitted.

type family Elem (a :: k) (bs :: [k]) :: Constraint where
Elem a (a ': bs) = (() :: Constraint)
Elem a (b ': bs) = a `Elem` bs

type family Sum (ns :: [Nat]) :: Nat where
Sum '[] = 0
Sum (n ': ns) = n + Sum ns

17.13 Kind Indexed Type Families
Just as typeclasses are normally indexed on types, type families can also be indexed on kinds with the
kinds given as explicit kind signatures on type variables.

type family (a :: k) == (b :: k) :: Bool
type instance a == b = EqStar a b
type instance a == b = EqArrow a b
type instance a == b = EqBool a b

type family EqStar (a :: *) (b :: *) where
EqStar a a = True
EqStar a b = False

type family EqArrow (a :: k1 -> k2) (b :: k1 -> k2) where
EqArrow a a = True
EqArrow a b = False

255 PROMOTION

type family EqBool a b where
EqBool True True = True
EqBool False False = True
EqBool a b = False

type family EqList a b where
EqList '[] '[] = True
EqList (h1 ': t1) (h2 ': t2) = (h1 == h2) && (t1 == t2)
EqList a b = False

type family a && b where
True && True = True
a && a = False

17.14 HLists
A heterogeneous list is a cons list whose type statically encodes the ordered types of its values.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE KindSignatures #-}

infixr 5 :::

data HList (ts :: [*]) where
Nil :: HList '[]
(:::) :: t -> HList ts -> HList (t ': ts)

-- Take the head of a non-empty list with the first value as Bool type.
headBool :: HList (Bool ': xs) -> Bool
headBool hlist = case hlist of
(a ::: _) -> a

hlength :: HList x -> Int
hlength Nil = 0
hlength (_ ::: b) = 1 + (hlength b)

tuple :: (Bool, (String, (Double, ())))
tuple = (True, ("foo", (3.14, ())))

hlist :: HList '[Bool, String , Double , ()]
hlist = True ::: "foo" ::: 3.14 ::: () ::: Nil

Of course this immediately begs the question of how to print such a list out to a string in the presence
of type-heterogeneity. In this case we can use type-families combined with constraint kinds to apply the
Show over the HLists parameters to generate the aggregate constraint that all types in the HList are
Showable, and then derive the Show instance.

PROMOTION 256

{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.Exts (Constraint)

infixr 5 :::

data HList (ts :: [*]) where
Nil :: HList '[]
(:::) :: t -> HList ts -> HList (t ': ts)

type family Map (f :: a -> b) (xs :: [a]) :: [b]
type instance Map f '[] = '[]
type instance Map f (x ': xs) = f x ': Map f xs

type family Constraints (cs :: [Constraint]) :: Constraint
type instance Constraints '[] = ()
type instance Constraints (c ': cs) = (c, Constraints cs)

type AllHave (c :: k -> Constraint) (xs :: [k]) = Constraints (Map c xs)

showHList :: AllHave Show xs => HList xs -> [String]
showHList Nil = []
showHList (x ::: xs) = (show x) : showHList xs

instance AllHave Show xs => Show (HList xs) where
show = show . showHList

example1 :: HList '[Bool, String , Double , ()]
example1 = True ::: "foo" ::: 3.14 ::: () ::: Nil
-- ["True","\"foo\"","3.14","()"]

17.15 Typelevel Dictionaries
Much of this discussion of promotion begs the question whether we can create data structures at the
type-level to store information at compile-time. For example a type-level association list can be used to
model a map between type-level symbols and any other promotable types. Together with type-families
we can write down type-level traversal and lookup functions.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}

257 PROMOTION

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits
import Data.Proxy
import Data.Type.Equality

type family If (p :: Bool) (a :: k) (b :: k) :: k where
If True a b = a
If False a b = b

type family Lookup (k :: a) (ls :: [(a, b)]) :: Maybe b where
Lookup k '[] = 'Nothing
Lookup k ('(a, b) ': xs) = If (a == k) ('Just b) (Lookup k xs)

type M = [
'("a", 1)

, '("b", 2)
, '("c", 3)
, '("d", 4)
]

type K = "a"
type (!!) m (k :: Symbol) a = (Lookup k m) ~ Just a

value :: Integer
value = natVal (Proxy :: (M !! "a") a => Proxy a)

If we ask GHC to expand out the type signature we can view the explicit implementation of the
type-level map lookup function.

(!!)
:: If

(GHC.TypeLits.EqSymbol "a" k)
('Just 1)
(If

(GHC.TypeLits.EqSymbol "b" k)
('Just 2)
(If

(GHC.TypeLits.EqSymbol "c" k)
('Just 3)
(If (GHC.TypeLits.EqSymbol "d" k) ('Just 4) 'Nothing)))

~ 'Just v =>
Proxy k -> Proxy v

PROMOTION 258

17.16 Advanced Proofs
Now that we have the length-indexed vector let’s go write the reverse function, how hard could it be?

So we go and write down something like this:

reverseNaive :: forall n a. Vec a n -> Vec a n
reverseNaive xs = go Nil xs -- Error: n + 0 != n
where

go :: Vec a m -> Vec a n -> Vec a (n :+ m)
go acc Nil = acc
go acc (Cons x xs) = go (Cons x acc) xs -- Error: n + succ m != succ (n + m)

Running this we find that GHC is unhappy about two lines in the code:

Couldn't match type ‘n’ with ‘n :+ 'Z’
Expected type: Vec a n

Actual type: Vec a (n :+ 'Z)

Could not deduce ((n1 :+ 'S m) ~ 'S (n1 :+ m))
Expected type: Vec a1 (k :+ m)

Actual type: Vec a1 (n1 :+ 'S m)

As we unfold elements out of the vector we’ll end up doing a lot of type-level arithmetic over indices
as we combine the subparts of the vector backwards, but as a consequence we find that GHC will run into
some unification errors because it doesn’t know about basic arithmetic properties of the natural numbers.
Namely that forall n. n + 0 = 0 and forall n m. n + (1 + m) = 1 + (n + m) . Which of course it really
shouldn’t be given that we’ve constructed a system at the type-level which intuitively models arithmetic
but GHC is just a dumb compiler, it can’t automatically deduce the isomorphism between natural numbers
and Peano numbers.

So at each of these call sites we now have a proof obligation to construct proof terms. Recall from our
discussion of propositional equality from GADTs that we actually have such machinery to construct this
now.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ExplicitForAll #-}

import Data.Type.Equality

data Nat = Z | S Nat

data SNat n where
Zero :: SNat Z
Succ :: SNat n -> SNat (S n)

259 PROMOTION

data Vec :: * -> Nat -> * where
Nil :: Vec a Z
Cons :: a -> Vec a n -> Vec a (S n)

instance Show a => Show (Vec a n) where
show Nil = "Nil"
show (Cons x xs) = "Cons " ++ show x ++ " (" ++ show xs ++ ")"

type family (m :: Nat) :+ (n :: Nat) :: Nat where
Z :+ n = n
S m :+ n = S (m :+ n)

-- (a ~ b) implies (f a ~ f b)
cong :: a :~: b -> f a :~: f b
cong Refl = Refl

-- (a ~ b) implies (f a) implies (f b)
subst :: a :~: b -> f a -> f b
subst Refl = id

plus_zero :: forall n. SNat n -> (n :+ Z) :~: n
plus_zero Zero = Refl
plus_zero (Succ n) = cong (plus_zero n)

plus_suc :: forall n m. SNat n -> SNat m -> (n :+ (S m)) :~: (S (n :+ m))
plus_suc Zero m = Refl
plus_suc (Succ n) m = cong (plus_suc n m)

size :: Vec a n -> SNat n
size Nil = Zero
size (Cons _ xs) = Succ $ size xs

reverse :: forall n a. Vec a n -> Vec a n
reverse xs = subst (plus_zero (size xs)) $ go Nil xs
where
go :: Vec a m -> Vec a k -> Vec a (k :+ m)
go acc Nil = acc
go acc (Cons x xs) = subst (plus_suc (size xs) (size acc)) $ go (Cons x acc) xs

append :: Vec a n -> Vec a m -> Vec a (n :+ m)
append (Cons x xs) ys = Cons x (append xs ys)
append Nil ys = ys

vec :: Vec Int (S (S (S Z)))
vec = 1 `Cons` (2 `Cons` (3 `Cons` Nil))

test :: Vec Int (S (S (S Z)))
test = Main.reverse vec

One might consider whether we could avoid using the singleton trick and just use type-level natural
numbers, and technically this approach should be feasible although it seems that the natural number
solver in GHC 7.8 can decide some properties but not the ones needed to complete the natural number

PROMOTION 260

proofs for the reverse functions.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import Prelude hiding (Eq)
import GHC.TypeLits
import Data.Type.Equality

type Z = 0

type family S (n :: Nat) :: Nat where
S n = n + 1

-- Yes!
eq_zero :: Z :~: Z
eq_zero = Refl

-- Yes!
zero_plus_one :: (Z + 1) :~: (1 + Z)
zero_plus_one = Refl

-- Yes!
plus_zero :: forall n. (n + Z) :~: n
plus_zero = Refl

-- Yes!
plus_one :: forall n. (n + S Z) :~: S n
plus_one = Refl

-- No.
plus_suc :: forall n m. (n + (S m)) :~: (S (n + m))
plus_suc = Refl

Caveat should be that there might be a way to do this in GHC 7.6 that I’m not aware of. In GHC
7.10 there are some planned changes to solver that should be able to resolve these issues. In particular
there are plans to allow pluggable type system extensions that could outsource these kind of problems to
third party SMT solvers which can solve these kind of numeric relations and return this information back
to GHC’s typechecker.

As an aside this is a direct transliteration of the equivalent proof in Agda, which is accomplished via
the same method but without the song and dance to get around the lack of dependent types.

module Vector where

infixr 10 _�_

data � : Set where

261 PROMOTION

zero : �
suc : � → �

{-# BUILTIN NATURAL � #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}

infixl 6 _+_

+ : � → � → �
0 + n = n
suc m + n = suc (m + n)

data Vec (A : Set) : � → Set where
[] : Vec A 0
� : � {n} → A → Vec A n → Vec A (suc n)

++ : � {A n m} → Vec A n → Vec A m → Vec A (n + m)
[] ++ ys = ys
(x � xs) ++ ys = x � (xs ++ ys)

infix 4 _�_

data _�_ {A : Set} (x : A) : A → Set where
refl : x � x

subst : {A : Set} → (P : A → Set) → �{x y} → x � y → P x → P y
subst P refl p = p

cong : {A B : Set} (f : A → B) → {x y : A} → x � y → f x � f y
cong f refl = refl

vec : � {A} (k : �) → Set
vec {A} k = Vec A k

plus_zero : {n : �} → n + 0 � n
plus_zero {zero} = refl
plus_zero {suc n} = cong suc plus_zero

plus_suc : {n : �} → n + (suc 0) � suc n
plus_suc {zero} = refl
plus_suc {suc n} = cong suc (plus_suc {n})

reverse : � {A n} → Vec A n → Vec A n
reverse [] = []
reverse {A} {suc n} (x � xs) = subst vec (plus_suc {n}) (reverse xs ++ (x � []))

17.17 Liquid Haskell
LiquidHaskell is an extension to GHC’s typesystem that adds the capacity for refinement types using
the annotation syntax. The type signatures of functions can be checked by the external for richer type

PROMOTION 262

semantics than default GHC provides, including non-exhaustive patterns and complex arithmetic prop-
erties that require external SMT solvers to verify. For instance LiquidHaskell can statically verify that a
function that operates over a Maybe a is always given a Just or that an arithmetic function always yields
an Int that is an even positive number.

LiquidHaskell analyses the modules and discharges proof obligations to an SMT solver to see if the
conditions are satisfiable. This allows us to prove the absence of a family of errors around memory safety,
arithmetic exceptions and information flow.

You will need either the Microsoft Research Z3 SMT solver or Stanford CVC4 SMT solver.
For Linux:

sudo apt install z3 # z3
sudo apt install cvc4 # cvc4

For Mac:

brew tap z3 # z3
brew tap cvc4/cvc4 # cvc4
brew install cvc4/cvc4/cvc4

Then install LiquidHaskell either with Cabal or Stack:

Run one of the following
cabal install liquidhaskell
stack install liquidhaskell

Then with the LiquidHaskell framework installed you can annotate your Haskell modules with refine-
ment types and run the liquid

import Prelude hiding (mod, gcd)

{-@ mod :: a:Nat -> b:{v:Nat| 0 < v} -> {v:Nat | v < b} @-}
mod :: Int -> Int -> Int
mod a b
| a < b = a
| otherwise = mod (a - b) b

{-@ gcd :: a:Nat -> b:{v:Nat | v < a} -> Int @-}
gcd :: Int -> Int -> Int
gcd a 0 = a
gcd a b = gcd b (a `mod` b)

The module can be run through the solver using the liquid command line tool.

https://github.com/Z3Prover/z3
https://cvc4.github.io/

263 PROMOTION

$ liquid example.hs
Done solving.

**** DONE: solve **

**** DONE: annotate ***

**** RESULT: SAFE **

To run Liquid Haskell over a Cabal project you can include the cabal directory by passing cabaldir
flag and then including the source directory which contains your application code. You can specify
additional specification for external modules by including a spec folder containing special LH modules
with definitions.

An example specification module.

module spec MySpec where

import GHC.Base
import GHC.Integer
import Data.Foldable

assume length :: Data.Foldable.Foldable f => xs:f a -> {v:Nat | v = len xs}

To run the checker over your project:

$ liquid -f --cabaldir -i src -i spec src/*.hs

For more extensive documentation and further use cases see the official documentation:

• Liquid Haskell Documentation

https://ucsd-progsys.github.io/liquidhaskell-tutorial/Tutorial_01_Introduction.html

PROMOTION 264

Chapter 18

Generics

Haskell has several techniques for automatic generation of type classes for a variety of tasks that consist
largely of boilerplate code generation such as:

• Pretty Printing
• Equality
• Serialization
• Ordering
• Traversals

18.1 Generic
The most modern method of doing generic programming uses type families to achieve a better method
of deriving the structural properties of arbitrary type classes. Generic implements a typeclass with an
associated type Rep (Representation) together with a pair of functions that form a 2-sided inverse (
isomorphism) for converting to and from the associated type and the derived type in question.

class Generic a where
type Rep a
from :: a -> Rep a
to :: Rep a -> a

class Datatype d where
datatypeName :: t d f a -> String
moduleName :: t d f a -> String

class Constructor c where
conName :: t c f a -> String

GHC.Generics defines a set of named types for modeling the various structural properties of types in
available in Haskell.

-- | Sums: encode choice between constructors
infixr 5 :+:
data (:+:) f g p = L1 (f p) | R1 (g p)

265

https://www.haskell.org/ghc/docs/7.4.1/html/libraries/ghc-prim-0.2.0.0/GHC-Generics.html

GENERICS 266

-- | Products: encode multiple arguments to constructors
infixr 6 :*:
data (:*:) f g p = f p :*: g p

-- | Tag for M1: datatype
data D
-- | Tag for M1: constructor
data C

-- | Constants, additional parameters and recursion of kind *
newtype K1 i c p = K1 { unK1 :: c }

-- | Meta-information (constructor names, etc.)
newtype M1 i c f p = M1 { unM1 :: f p }

-- | Type synonym for encoding meta-information for datatypes
type D1 = M1 D

-- | Type synonym for encoding meta-information for constructors
type C1 = M1 C

Using the deriving mechanics GHC can generate this Generic instance for us mechanically, if we were
to write it by hand for a simple type it might look like this:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}

import GHC.Generics

data Animal
= Dog
| Cat

instance Generic Animal where
type

Rep Animal =
D1 ('MetaData "Animal" "Main" "main" 'False)

(C1 ('MetaCons "Dog" 'PrefixI 'False)
U1 :+: C1 ('MetaCons "Cat" 'PrefixI 'False) U1

)

from Dog = M1 (L1 (M1 U1))
from Cat = M1 (R1 (M1 U1))

to (M1 (L1 (M1 U1))) = Dog
to (M1 (R1 (M1 U1))) = Cat

data T_Animal -- Animal type
data C_Dog -- Dog Constructor
data C_Cat -- Cat Constructor

267 GENERICS

instance Datatype T_Animal where
datatypeName _ = "Animal"
moduleName _ = "Main"
packageName _ = "main"

instance Constructor C_Dog where
conName _ = "Dog"

instance Constructor C_Cat where
conName _ = "Cat"

Use kind! in GHCi we can look at the type family Rep associated with a Generic instance.

�: :kind! Rep Animal
Rep Animal :: * -> *
= M1 D T_Animal (M1 C C_Dog U1 :+: M1 C C_Cat U1)

�: :kind! Rep ()
Rep () :: * -> *
= M1 D GHC.Generics.D1() (M1 C GHC.Generics.C1_0() U1)

�: :kind! Rep [()]
Rep [()] :: * -> *
= M1

D
GHC.Generics.D1[]
(M1 C GHC.Generics.C1_0[] U1
:+: M1

C
GHC.Generics.C1_1[]
(M1 S NoSelector (K1 R ()) :*: M1 S NoSelector (K1 R [()])))

Now the clever bit, instead writing our generic function over the datatype we instead write it over
the Rep and then reify the result using from . So for an equivalent version of Haskell’s default Eq that
instead uses generic deriving we could write:

class GEq' f where
geq' :: f a -> f a -> Bool

instance GEq' U1 where
geq' _ _ = True

instance (GEq c) => GEq' (K1 i c) where
geq' (K1 a) (K1 b) = geq a b

instance (GEq' a) => GEq' (M1 i c a) where
geq' (M1 a) (M1 b) = geq' a b

GENERICS 268

-- Equality for sums.
instance (GEq' a, GEq' b) => GEq' (a :+: b) where
geq' (L1 a) (L1 b) = geq' a b
geq' (R1 a) (R1 b) = geq' a b
geq' _ _ = False

-- Equality for products.
instance (GEq' a, GEq' b) => GEq' (a :*: b) where
geq' (a1 :*: b1) (a2 :*: b2) = geq' a1 a2 && geq' b1 b2

To accommodate the two methods of writing classes (generic-deriving or custom implementations) we
can use the DefaultSignatures extension to allow the user to leave typeclass functions blank and defer to
Generic or to define their own.

{-# LANGUAGE DefaultSignatures #-}

class GEq a where
geq :: a -> a -> Bool

default geq :: (Generic a, GEq' (Rep a)) => a -> a -> Bool
geq x y = geq' (from x) (from y)

Now anyone using our library need only derive Generic and create an empty instance of our typeclass
instance without writing any boilerplate for GEq .

Here is a complete example for deriving equality generics:

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE DefaultSignatures #-}

import GHC.Generics

-- Auxiliary class
class GEq' f where
geq' :: f a -> f a -> Bool

instance GEq' U1 where
geq' _ _ = True

instance (GEq c) => GEq' (K1 i c) where
geq' (K1 a) (K1 b) = geq a b

instance (GEq' a) => GEq' (M1 i c a) where
geq' (M1 a) (M1 b) = geq' a b

instance (GEq' a, GEq' b) => GEq' (a :+: b) where
geq' (L1 a) (L1 b) = geq' a b
geq' (R1 a) (R1 b) = geq' a b

269 GENERICS

geq' _ _ = False

instance (GEq' a, GEq' b) => GEq' (a :*: b) where
geq' (a1 :*: b1) (a2 :*: b2) = geq' a1 a2 && geq' b1 b2

--
class GEq a where
geq :: a -> a -> Bool
default geq :: (Generic a, GEq' (Rep a)) => a -> a -> Bool
geq x y = geq' (from x) (from y)

-- Base equalities
instance GEq Char where geq = (==)
instance GEq Int where geq = (==)
instance GEq Float where geq = (==)

-- Equalities derived from structure of (:+:) and (:*:)
instance GEq a => GEq (Maybe a)
instance (GEq a, GEq b) => GEq (a,b)

main :: IO ()
main = do
print $ geq 2 (3 :: Int)
print $ geq 'a' 'b'
print $ geq (Just 'a') (Just 'a')
print $ geq ('a','b') ('a', 'b')

See:

• Cooking Classes with Datatype Generic Programming
• Datatype-generic Programming in Haskell
• generic-deriving

18.2 Generic Deriving
Using Generics many common libraries provide a mechanisms to derive common typeclass instances. Some
real world examples:

The hashable library allows us to derive hashing functions.

{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics (Generic)
import Data.Hashable

data Color = Red | Green | Blue deriving (Generic, Show)

instance Hashable Color where

example1 :: Int
example1 = hash Red

http://www.stephendiehl.com/posts/generics.html
http://www.andres-loeh.de/DGP-Intro.pdf
http://hackage.haskell.org/package/generic-deriving-1.6.3
http://hackage.haskell.org/package/hashable

GENERICS 270

-- 839657738087498284

example2 :: Int
example2 = hashWithSalt 0xDEADBEEF Red
-- 62679985974121021

The cereal library allows us to automatically derive a binary representation.

{-# LANGUAGE DeriveGeneric #-}

import Data.Word
import Data.ByteString
import Data.Serialize

import GHC.Generics

data Val = A [Val] | B [(Val, Val)] | C
deriving (Generic, Show)

instance Serialize Val where

encoded :: ByteString
encoded = encode (A [B [(C, C)]])
-- "\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\SOH\SOH\NUL\NUL\NUL\NUL\NUL\NUL\NUL\SOH\STX\STX"

bytes :: [Word8]
bytes = unpack encoded
-- [0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,2,2]

decoded :: Either String Val
decoded = decode encoded

The aeson library allows us to derive JSON representations for JSON instances.

{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}

import Data.Aeson
import GHC.Generics

data Point = Point { _x :: Double, _y :: Double }
deriving (Show, Generic)

instance FromJSON Point
instance ToJSON Point

example1 :: Maybe Point
example1 = decode "{\"x\":3.0,\"y\":-1.0}"

http://hackage.haskell.org/package/cereal-0.4.0.1
http://hackage.haskell.org/package/aeson

271 GENERICS

example2 = encode $ Point 123.4 20

See: A Generic Deriving Mechanism for Haskell

Higher Kinded Generics Using the same interface GHC.Generics provides a separate typeclass for
higher-kinded generics.

class Generic1 f where
type Rep1 f :: * -> *
from1 :: f a -> (Rep1 f) a
to1 :: (Rep1 f) a -> f a

So for instance Maybe has Rep1 of the form:

type instance Rep1 Maybe
= D1

GHC.Generics.D1Maybe
(C1 C1_0Maybe U1
:+: C1 C1_1Maybe (S1 NoSelector Par1))

18.3 Typeable
The Typeable class be used to create runtime type information for arbitrary types.

typeOf :: Typeable a => a -> TypeRep

{-# LANGUAGE DeriveDataTypeable #-}

import Data.Typeable

data Animal = Cat | Dog deriving Typeable
data Zoo a = Zoo [a] deriving Typeable

equal :: (Typeable a, Typeable b) => a -> b -> Bool
equal a b = typeOf a == typeOf b

example1 :: TypeRep
example1 = typeOf Cat
-- Animal

example2 :: TypeRep

http://dreixel.net/research/pdf/gdmh.pdf

GENERICS 272

example2 = typeOf (Zoo [Cat, Dog])
-- Zoo Animal

example3 :: TypeRep
example3 = typeOf ((1, 6.636e-34, "foo") :: (Int, Double, String))
-- (Int,Double,[Char])

example4 :: Bool
example4 = equal False ()
-- False

Using the Typeable instance allows us to write down a type safe cast function which can safely use
unsafeCast and provide a proof that the resulting type matches the input.

cast :: (Typeable a, Typeable b) => a -> Maybe b
cast x
| typeOf x == typeOf ret = Just ret
| otherwise = Nothing
where

ret = unsafeCast x

Of historical note is that writing our own Typeable classes is currently possible of GHC 7.6 but allows
us to introduce dangerous behavior that can cause crashes, and shouldn’t be done except by GHC itself.
As of 7.8 GHC forbids hand-written Typeable instances. As of 7.10 -XAutoDeriveTypeable is enabled by
default.

See: Typeable and Data in Haskell

18.4 Dynamic Types
Since we have a way of querying runtime type information we can use this machinery to implement a
Dynamic type. This allows us to box up any monotype into a uniform type that can be passed to any

function taking a Dynamic type which can then unpack the underlying value in a type-safe way.

toDyn :: Typeable a => a -> Dynamic
fromDyn :: Typeable a => Dynamic -> a -> a
fromDynamic :: Typeable a => Dynamic -> Maybe a
cast :: (Typeable a, Typeable b) => a -> Maybe b

import Data.Dynamic
import Data.Maybe

dynamicBox :: Dynamic
dynamicBox = toDyn (6.62 :: Double)

example1 :: Maybe Int

http://chrisdone.com/posts/data-typeable

273 GENERICS

example1 = fromDynamic dynamicBox
-- Nothing

example2 :: Maybe Double
example2 = fromDynamic dynamicBox
-- Just 6.62

example3 :: Int
example3 = fromDyn dynamicBox 0
-- 0

example4 :: Double
example4 = fromDyn dynamicBox 0.0
-- 6.62

In GHC 7.8 the Typeable class is poly-kinded so polymorphic functions can be applied over functions
and higher kinded types.

Use of Dynamic is somewhat rare, except in odd cases that have to deal with foreign memory and FFI
interfaces. Using it for business logic is considered a code smell. Consider a more idiomatic solution.

18.5 Data
Just as Typeable lets us create runtime type information, the Data class allows us to reflect information
about the structure of datatypes to runtime as needed.

class Typeable a => Data a where
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)

-> (forall g. g -> c g)
-> a
-> c a

gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r)
-> Constr
-> c a

toConstr :: a -> Constr
dataTypeOf :: a -> DataType
gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r

The types for gfoldl and gunfold are a little intimidating (and depend on RankNTypes), the best
way to understand is to look at some examples. First the most trivial case a simple sum type Animal
would produce the following code:

data Animal = Cat | Dog deriving Typeable

GENERICS 274

instance Data Animal where
gfoldl k z Cat = z Cat
gfoldl k z Dog = z Dog

gunfold k z c
= case constrIndex c of

1 -> z Cat
2 -> z Dog

toConstr Cat = cCat
toConstr Dog = cDog

dataTypeOf _ = tAnimal

tAnimal :: DataType
tAnimal = mkDataType "Main.Animal" [cCat, cDog]

cCat :: Constr
cCat = mkConstr tAnimal "Cat" [] Prefix

cDog :: Constr
cDog = mkConstr tAnimal "Dog" [] Prefix

For a type with non-empty containers we get something a little more interesting. Consider the list
type:

instance Data a => Data [a] where
gfoldl _ z [] = z []
gfoldl k z (x:xs) = z (:) `k` x `k` xs

toConstr [] = nilConstr
toConstr (_:_) = consConstr

gunfold k z c
= case constrIndex c of

1 -> z []
2 -> k (k (z (:)))

dataTypeOf _ = listDataType

nilConstr :: Constr
nilConstr = mkConstr listDataType "[]" [] Prefix

consConstr :: Constr
consConstr = mkConstr listDataType "(:)" [] Infix

listDataType :: DataType
listDataType = mkDataType "Prelude.[]" [nilConstr,consConstr]

Looking at gfoldl we see the Data has an implementation of a function for us to walk an applicative

275 GENERICS

over the elements of the constructor by applying a function k over each element and applying z at the
spine. For example look at the instance for a 2-tuple as well:

instance (Data a, Data b) => Data (a,b) where
gfoldl k z (a,b) = z (,) `k` a `k` b

toConstr (_,_) = tuple2Constr

gunfold k z c
= case constrIndex c of

1 -> k (k (z (,)))

dataTypeOf _ = tuple2DataType

tuple2Constr :: Constr
tuple2Constr = mkConstr tuple2DataType "(,)" [] Infix

tuple2DataType :: DataType
tuple2DataType = mkDataType "Prelude.(,)" [tuple2Constr]

This is pretty neat, now within the same typeclass we have a generic way to introspect any Data
instance and write logic that depends on the structure and types of its subterms. We can now write a
function which allows us to traverse an arbitrary instance of Data and twiddle values based on pattern
matching on the runtime types. So let’s write down a function over which increments a Value type for
both for n-tuples and lists.

{-# LANGUAGE DeriveDataTypeable #-}

import Data.Data
import Control.Monad.Identity
import Control.Applicative

data Animal = Cat | Dog deriving (Data, Typeable)

newtype Val = Val Int deriving (Show, Data, Typeable)

incr :: Typeable a => a -> a
incr = maybe id id (cast f)
where f (Val x) = Val (x * 100)

over :: Data a => a -> a
over x = runIdentity $ gfoldl cont base (incr x)
where
cont k d = k <*> (pure $ over d)
base = pure

example1 :: Constr
example1 = toConstr Dog
-- Dog

GENERICS 276

example2 :: DataType
example2 = dataTypeOf Cat
-- DataType {tycon = "Main.Animal", datarep = AlgRep [Cat,Dog]}

example3 :: [Val]
example3 = over [Val 1, Val 2, Val 3]
-- [Val 100,Val 200,Val 300]

example4 :: (Val, Val, Val)
example4 = over (Val 1, Val 2, Val 3)
-- (Val 100,Val 200,Val 300)

We can also write generic operations, for example to count the number of parameters in a data type.

numHoles :: Data a => a -> Int
numHoles = gmapQl (+) 0 (const 1)

example1 :: Int
example1 = numHoles (1,2,3,4,5,6,7)
-- 7

example2 :: Int
example2 = numHoles (Just 3)
-- 1

18.6 Uniplate
Uniplate is a generics library for writing traversals and transformation for arbitrary data structures. It is
extremely useful for writing AST transformations and rewriting systems.

plate :: from -> Type from to
(|*) :: Type (to -> from) to -> to -> Type from to
(|-) :: Type (item -> from) to -> item -> Type from to

descend :: Uniplate on => (on -> on) -> on -> on
transform :: Uniplate on => (on -> on) -> on -> on
rewrite :: Uniplate on => (on -> Maybe on) -> on -> on

The descend function will apply a function to each immediate descendant of an expression and then
combines them up into the parent expression.

The transform function will perform a single pass bottom-up transformation of all terms in the ex-
pression.

The rewrite function will perform an exhaustive transformation of all terms in the expression to fixed
point, using Maybe to signify termination.

277 GENERICS

import Data.Generics.Uniplate.Direct

data Expr a
= Fls
| Tru
| Var a
| Not (Expr a)
| And (Expr a) (Expr a)
| Or (Expr a) (Expr a)
deriving (Show, Eq)

instance Uniplate (Expr a) where
uniplate (Not f) = plate Not |* f
uniplate (And f1 f2) = plate And |* f1 |* f2
uniplate (Or f1 f2) = plate Or |* f1 |* f2
uniplate x = plate x

simplify :: Expr a -> Expr a
simplify = transform simp
where

simp (Not (Not f)) = f
simp (Not Fls) = Tru
simp (Not Tru) = Fls
simp x = x

reduce :: Show a => Expr a -> Expr a
reduce = rewrite cnf
where

-- double negation
cnf (Not (Not p)) = Just p

-- de Morgan
cnf (Not (p `Or` q)) = Just $ (Not p) `And` (Not q)
cnf (Not (p `And` q)) = Just $ (Not p) `Or` (Not q)

-- distribute conjunctions
cnf (p `Or` (q `And` r)) = Just $ (p `Or` q) `And` (p `Or` r)
cnf ((p `And` q) `Or` r) = Just $ (p `Or` q) `And` (p `Or` r)
cnf _ = Nothing

example1 :: Expr String
example1 = simplify (Not (Not (Not (Not (Var "a")))))
-- Var "a"

example2 :: [String]
example2 = [a | Var a <- universe ex]

where
ex = Or (And (Var "a") (Var "b")) (Not (And (Var "c") (Var "d")))

-- ["a","b","c","d"]

example3 :: Expr String

GENERICS 278

example3 = reduce $ ((a `And` b) `Or` (c `And` d)) `Or` e
where

a = Var "a"
b = Var "b"
c = Var "c"
d = Var "d"
e = Var "e"

Alternatively Uniplate instances can be derived automatically from instances of Data without the need
to explicitly write a Uniplate instance. This approach carries a slight amount of overhead over an explicit
hand-written instance.

import Data.Data
import Data.Typeable
import Data.Generics.Uniplate.Data

data Expr a
= Fls
| Tru
| Lit a
| Not (Expr a)
| And (Expr a) (Expr a)
| Or (Expr a) (Expr a)
deriving (Data, Typeable, Show, Eq)

Biplate
Biplates generalize plates where the target type isn’t necessarily the same as the source, it uses mul-

tiparameter typeclasses to indicate the type sub of the sub-target. The Uniplate functions all have an
equivalent generalized biplate form.

descendBi :: Biplate from to => (to -> to) -> from -> from
transformBi :: Biplate from to => (to -> to) -> from -> from
rewriteBi :: Biplate from to => (to -> Maybe to) -> from -> from

descendBiM :: (Monad m, Biplate from to) => (to -> m to) -> from -> m from
transformBiM :: (Monad m, Biplate from to) => (to -> m to) -> from -> m from
rewriteBiM :: (Monad m, Biplate from to) => (to -> m (Maybe to)) -> from -> m from

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleContexts #-}

import Data.Generics.Uniplate.Direct

type Name = String

279 GENERICS

data Expr
= Var Name
| Lam Name Expr
| App Expr Expr
deriving Show

data Stmt
= Decl [Stmt]
| Let Name Expr
deriving Show

instance Uniplate Expr where
uniplate (Var x) = plate Var |- x
uniplate (App x y) = plate App |* x |* y
uniplate (Lam x y) = plate Lam |- x |* y

instance Biplate Expr Expr where
biplate = plateSelf

instance Uniplate Stmt where
uniplate (Decl x) = plate Decl ||* x
uniplate (Let x y) = plate Let |- x |- y

instance Biplate Stmt Stmt where
biplate = plateSelf

instance Biplate Stmt Expr where
biplate (Decl x) = plate Decl ||+ x
biplate (Let x y) = plate Let |- x |* y

rename :: Name -> Name -> Expr -> Expr
rename from to = rewrite f
where
f (Var a) | a == from = Just (Var to)
f (Lam a b) | a == from = Just (Lam to b)
f _ = Nothing

s, k, sk :: Expr
s = Lam "x" (Lam "y" (Lam "z" (App (App (Var "x") (Var "z")) (App (Var "y") (Var "z")))))
k = Lam "x" (Lam "y" (Var "x"))
sk = App s k

m :: Stmt
m = descendBi f $ Decl [(Let "s" s) , Let "k" k , Let "sk" sk]
where
f = rename "x" "a"

. rename "y" "b"

. rename "z" "c"

GENERICS 280

Chapter 19

Mathematics

19.1 Numeric Tower

Haskell’s numeric tower is unusual and the source of some confusion for novices. Haskell is one of the few
languages to incorporate statically typed overloaded literals without a mechanism for “coercions” often
found in other languages.

To add to the confusion numerical literals in Haskell are desugared into a function from a numeric type-
class which yields a polymorphic value that can be instantiated to any instance of the Num or Fractional
typeclass at the call-site, depending on the inferred type.

To use a blunt metaphor, we’re effectively placing an object in a hole and the size and shape of the
hole defines the object you place there. This is very different than in other languages where a numeric
literal like 2.718 is hard coded in the compiler to be a specific type (double or something) and you cast
the value at runtime to be something smaller or larger as needed.

42 :: Num a => a
fromInteger (42 :: Integer)

2.71 :: Fractional a => a
fromRational (2.71 :: Rational)

The numeric typeclass hierarchy is defined as such:

class Num a
class (Num a, Ord a) => Real a
class Num a => Fractional a
class (Real a, Enum a) => Integral a
class (Real a, Fractional a) => RealFrac a
class Fractional a => Floating a
class (RealFrac a, Floating a) => RealFloat a

281

MATHEMATICS 282

Conversions between concrete numeric types (from : left column, to : top row) is accomplished with
several generic functions.

Double Float Int Word Integer Rational
Double id fromRational truncate truncate truncate toRational
Float fromRational id truncate truncate truncate toRational
Int fromIntegral fromIntegral id fromIntegral fromIntegral fromIntegral
Word fromIntegral fromIntegral fromIntegral id fromIntegral fromIntegral
Integer fromIntegral fromIntegral fromIntegral fromIntegral id fromIntegral
Rational fromRational fromRational truncate truncate truncate id

19.2 GMP Integers

The Integer type in GHC is implemented by the GMP (libgmp) arbitrary precision arithmetic library.
Unlike the Int type, the size of Integer values is bounded only by the available memory.

�: (2^64 :: Int)
0
�: (2^64 :: Integer)
18446744073709551616

Most notably libgmp is one of the few libraries that compiled Haskell binaries are dynamically linked
against. An alternative library integer-simple can be linked in place of libgmp.

283 MATHEMATICS

19.3 Complex Numbers
Haskell supports arithmetic with complex numbers via a Complex datatype from the Data.Complex module.
The first argument is the real part, while the second is the imaginary part. The type has a single
parameter and inherits its numerical typeclass components (Num, Fractional, Floating) from the type of
this parameter.

-- 1 + 2i
let complex = 1 :+ 2

data Complex a = a :+ a
mkPolar :: RealFloat a => a -> a -> Complex a

The Num instance for Complex is only defined if parameter of Complex is an instance of RealFloat .

�: 0 :+ 1
0 :+ 1 :: Complex Integer

�: (0 :+ 1) + (1 :+ 0)
1.0 :+ 1.0 :: Complex Integer

�: exp (0 :+ 2 * pi)
1.0 :+ (-2.4492935982947064e-16) :: Complex Double

�: mkPolar 1 (2*pi)
1.0 :+ (-2.4492935982947064e-16) :: Complex Double

�: let f x n = (cos x :+ sin x)^n
�: let g x n = cos (n*x) :+ sin (n*x)

19.4 Decimal & Scientific Types
Scientific provides arbitrary-precision numbers represented using scientific notation. The constructor takes
an arbitrarily sized Integer argument for the digits and an Int for the exponent. Alternatively the value
can be parsed from a String or coerced from either Double/Float.

scientific :: Integer -> Int -> Scientific
fromFloatDigits :: RealFloat a => a -> Scientific

import Data.Scientific

MATHEMATICS 284

c , h, g, a, k :: Scientific
c = scientific 299792458 (0) -- Speed of light
h = scientific 662606957 (-42) -- Planck's constant
g = scientific 667384 (-16) -- Gravitational constant
a = scientific 729735257 (-11) -- Fine structure constant
k = scientific 268545200 (-9) -- Khinchin-Levy Constant

tau :: Scientific
tau = fromFloatDigits (2 * pi)

maxDouble64 :: Double
maxDouble64 = read "1.7976931348623159e308"

-- Infinity

maxScientific :: Scientific
maxScientific = read "1.7976931348623159e308"
-- 1.7976931348623159e308

19.5 Polynomial Arithmetic
The standard library for working with symbolic polynomials is the poly library. It exposes a interface
for working with univariate polynomials which are backed by an efficient vector library. This allows us to
efficiently manipulate and perform arithmetic operations over univariate polynomails.

For example we can instantiate symbolic polynomials, write recurrence rules and generators over them
and factor them.

import Data.Poly

abel :: VPoly Integer
abel = X ^ 5 - X + 1

fibPoly :: Integer -> VPoly Integer
fibPoly 0 = 0
fibPoly 1 = 1
fibPoly n = X * fibPoly (n - 1) + fibPoly (n - 2)

division :: (VPoly Double, VPoly Double)
division = gcdExt (X ^ 3 - 2 * X ^ 2 - 4) (X - 3)

See: poly

19.6 Combinatorics
Combinat is the standard Haskell library for doing combinatorial calculations. It provides a variety of
functions for computing:

• Permutations & Combinations
• Braid Groups

https://hackage.haskell.org/package/poly
https://hackage.haskell.org/package/combinat-0.2.9.0/docs/Math-Combinat-Permutations.html
https://hackage.haskell.org/package/combinat-0.2.9.0/docs/Math-Combinat-Groups-Braid.html

285 MATHEMATICS

• Integer Partitions
• Young’s Tableux
• Lattice Paths

See: combinat

19.7 Number Theory
Arithmoi is the standard number theory library for Haskell. It provides functions for calculing common
number theory operations used in combinators and cryptography applications in Haskell. Including:

• Modular square roots
• Möbius Inversions
• Primarily Testing
• Riemann Zeta Functions
• Pollard’s Rho Algorithm
• Jacobi symbols
• Meijer-G Functions

import Data.Maybe
import Math.NumberTheory.ArithmeticFunctions
import Math.NumberTheory.Moduli.Sqrt
import Math.NumberTheory.Primes
import Math.NumberTheory.Zeta

-- Riemann zeta function
exampleZeta :: Double
exampleZeta = zetas 1e-10 !! 10

-- Euler totient function
exampleEuler :: Integer
exampleEuler = totient 25

-- Ramanujan tau function
exampleRamanujan :: Integer
exampleRamanujan = ramanujan 16

-- Primality testing
examplePrimality :: Maybe (Prime Integer)
examplePrimality = isPrime 2147483647

-- Square roots moduluo prime
exampleSqrt :: [Integer]
exampleSqrt = sqrtsModPrime 42 (fromJust examplePrimality)

See: arithmoi

19.8 Stochastic Calculus
HQuantLib provides a variety of functions for working with stochastic processes. This primarily applies

to stochastic calculus applied to pricing financial products such as the Black-Scholes pricing engine and
routines for calculating volatility smiles of options products.

https://hackage.haskell.org/package/combinat-0.2.9.0/docs/Math-Combinat-Partitions-Integer.html
https://hackage.haskell.org/package/combinat-0.2.9.0/docs/Math-Combinat-Tableaux.html
https://hackage.haskell.org/package/combinat-0.2.9.0/docs/Math-Combinat-LatticePaths.html#t:LatticePath
https://hackage.haskell.org/package/combinat
https://hackage.haskell.org/package/arithmoi-0.10.0.0/docs/Math-NumberTheory-Moduli-Sqrt.html
https://hackage.haskell.org/package/arithmoi-0.10.0.0/docs/Math-NumberTheory-MoebiusInversion.html
https://hackage.haskell.org/package/arithmoi-0.10.0.0/docs/Math-NumberTheory-Primes.html
https://hackage.haskell.org/package/arithmoi-0.10.0.0/docs/Math-NumberTheory-Zeta.html
https://hackage.haskell.org/package/arithmoi-0.10.0.0/docs/Math-NumberTheory-Moduli-DiscreteLogarithm.html
https://hackage.haskell.org/package/arithmoi-0.10.0.0/docs/Math-NumberTheory-Moduli-Jacobi.html
https://hackage.haskell.org/package/arithmoi

MATHEMATICS 286

See: HQuantLib

19.9 Differential Equations
There are several Haskell libraries for finding numerical solutions to systems of differential equations.
These kind of problems show up quite frequently in scientific computing problems.

For example a simple differential equation is Van der Pol oscillator which occurs frequently in physics.
This is a second order differential equation which relates the position of a oscillator x in terms of time,
acceleration d2x

dt2 , and the velocity dx
dt a scalar parameter µ. It is given by the equation.

d2x

dt2 − µ(1 − x2)dx

dt
+ x = 0,

For example this equation can be solved for a fixed µ and set of boundary conditions for the time
parameter t. The solution is returned as an HMatrix vector.

{-# LANGUAGE OverloadedLists #-}

module Main where

import Numeric.GSL.ODE
import Numeric.LinearAlgebra

-- Differential equation
f :: Double -> [Double] -> [Double]
f t [x, v] = [v, - x + mu * v * (1 - x ^ 2)]

-- Mu scalar, dampening strenth
mu :: Double
mu = 0.1

-- Boundary conditions
ts :: Vector Double
ts = linspace 1000 (0, 50)

-- Use default solver: Embedded Runge-Kutta-Fehlberg (4, 5) method.
vanderpol1 :: [Vector Double]
vanderpol1 = toColumns $ odeSolve f [1, 0] ts

-- Use Runge-Kutta (2,3) solver
vanderpol2 :: [Vector Double]
vanderpol2 = toColumns $ odeSolveV RK2 hi epsAbs epsRel (l2v f) [1, 0] ts
where

epsAbs = 1.49012e-08
epsRel = epsAbs
hi = (ts ! 1 - ts ! 0) / 100
l2v f = \t -> fromList . f t . toList

main :: IO ()
main = do
print vanderpol1
print vanderpol2

https://hackage.haskell.org/package/hquantlib

287 MATHEMATICS

19.10 Statistics & Probability
Haskell has a basic statistics library for calculating descriptive statistics, generating and sampling proba-
bility distributions and performing statistical tests.

import Data.Vector
import Statistics.Sample

import Statistics.Distribution.Normal
import Statistics.Distribution.Poisson
import qualified Statistics.Distribution as S

s1 :: Vector Double
s1 = fromList [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

s2 :: PoissonDistribution
s2 = poisson 2.5

s3 :: NormalDistribution
s3 = normalDistr mean stdDev
where
mean = 1
stdDev = 1

descriptive :: IO ()
descriptive = do
print $ range s1
-- 9.0
print $ mean s1
-- 5.5
print $ stdDev s1
-- 3.0276503540974917
print $ variance s1
-- 8.25
print $ harmonicMean s1
-- 3.414171521474055
print $ geometricMean s1
-- 4.5287286881167645

discrete :: IO ()
discrete = do
print $ S.cumulative s2 0
-- 8.208499862389884e-2
print $ S.mean s2
-- 2.5
print $ S.variance s2
-- 2.5
print $ S.stdDev s2
-- 1.5811388300841898

continuous :: IO ()
continuous = do
print $ S.cumulative s3 0

MATHEMATICS 288

-- 0.15865525393145707
print $ S.quantile s3 0.5
-- 1.0
print $ S.density s3 0
-- 0.24197072451914334
print $ S.mean s3
-- 1.0
print $ S.variance s3
-- 1.0
print $ S.stdDev s3
-- 1.0

19.11 Constructive Reals

Instead of modeling the real numbers on finite precision floating point numbers we alternatively work with
Num which internally manipulates the power series expansions for the expressions when performing oper-

ations like arithmetic or transcendental functions without losing precision when performing intermediate
computations. Then we simply slice off a fixed number of terms and approximate the resulting number to
a desired precision. This approach is not without its limitations and caveats (notably that it may diverge
).

exp(x) = 1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5 ...
sqrt(1+x) = 1 + 1/2*x - 1/8*x^2 + 1/16*x^3 - 5/128*x^4 + 7/256*x^5 ...
atan(x) = x - 1/3*x^3 + 1/5*x^5 - 1/7*x^7 + 1/9*x^9 - 1/11*x^11 ...
pi = 16 * atan (1/5) - 4 * atan (1/239)

import Data.Number.CReal

-- algebraic
phi :: CReal
phi = (1 + sqrt 5) / 2

-- transcendental
ramanujan :: CReal
ramanujan = exp (pi * sqrt 163)

main :: IO ()
main = do
putStrLn $ showCReal 30 pi
-- 3.141592653589793238462643383279
putStrLn $ showCReal 30 phi
-- 1.618033988749894848204586834366
putStrLn $ showCReal 15 ramanujan
-- 262537412640768743.99999999999925

289 MATHEMATICS

19.12 SAT Solvers
A collection of constraint problems known as satisfiability problems show up in a number of different
disciplines from type checking to package management. Simply put a satisfiability problem attempts to
find solutions to a statement of conjoined conjunctions and disjunctions in terms of a series of variables.
For example:

(A v ¬B v C) � (B v D v E) � (D v F)

To use the picosat library to solve this, it can be written as zero-terminated lists of integers and fed
to the solver according to a number-to-variable relation:

1 -2 3 -- (A v ¬B v C)
2 4 5 -- (B v D v E)
4 6 -- (D v F)

import Picosat

main :: IO [Int]
main = do
solve [[1, -2, 3], [2,4,5], [4,6]]
-- Solution [1,-2,3,4,5,6]

The SAT solver itself can be used to solve satisfiability problems with millions of variables in this form
and is finely tuned.

See:

• picosat

19.13 SMT Solvers
A generalization of the SAT problem to include predicates other theories gives rise to the very sophisticated
domain of “Satisfiability Modulo Theory” problems. The existing SMT solvers are very sophisticated
projects (usually bankrolled by large institutions) and usually have to be called out to via foreign
function interface or via a common interface called SMT-lib. The two most common of use in Haskell are
cvc4 from Stanford and z3 from Microsoft Research.

The SBV library can abstract over different SMT solvers to allow us to express the problem in an
embedded domain language in Haskell and then offload the solving work to the third party library.

As an example, here’s how you can solve a simple cryptarithm

M O N A D
+ B U R R I T O
= B A N D A I D

using SBV library:

http://hackage.haskell.org/package/picosat-0.1.1
https://en.wikipedia.org/wiki/Verbal_arithmetic

MATHEMATICS 290

import Data.Foldable
import Data.SBV

-- | val [4,2] == 42
val :: [SInteger] -> SInteger
val = foldr1 (\d r -> d + 10*r) . reverse

puzzle :: Symbolic SBool
puzzle = do
ds@[b,u,r,i,t,o,m,n,a,d] <- sequenceA [sInteger [v] | v <- "buritomnad"]
constrain $ distinct ds
for_ ds $ \d -> constrain $ inRange d (0,9)
pure $ val [b,u,r,r,i,t,o]

+ val [m,o,n,a,d]
.== val [b,a,n,d,a,i,d]

Let’s look at all possible solutions,

�: allSat puzzle
Solution #1:
b = 4 :: Integer
u = 1 :: Integer
r = 5 :: Integer
i = 9 :: Integer
t = 7 :: Integer
o = 0 :: Integer
m = 8 :: Integer
n = 3 :: Integer
a = 2 :: Integer
d = 6 :: Integer

This is the only solution.

Chapter 20

Data Structures

20.1 Map
A map is an associative array mapping any instance of Ord keys to values of any type.

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(log(n))
Insertion insert O(log(n))
Traversal traverse O(n)

import qualified Data.Map as Map

kv :: Map.Map Integer String
kv = Map.fromList [(1, "a"), (2, "b")]

lkup :: Integer -> String -> String
lkup key def =
case Map.lookup key kv of
Just val -> val
Nothing -> def

20.2 Tree
A tree is directed graph with a single root.

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(log(n))
Insertion insert O(log(n))
Traversal traverse O(n)

291

DATA STRUCTURES 292

import Data.Tree

{-

A
/ \

B C
/ \
D E

-}

tree :: Tree String
tree = Node "A" [Node "B" [], Node "C" [Node "D" [], Node "E" []]]

postorder :: Tree a -> [a]
postorder (Node a ts) = elts ++ [a]
where elts = concat (map postorder ts)

preorder :: Tree a -> [a]
preorder (Node a ts) = a : elts
where elts = concat (map preorder ts)

ex1 = drawTree tree
ex2 = drawForest (subForest tree)
ex3 = flatten tree
ex4 = levels tree
ex5 = preorder tree
ex6 = postorder tree

20.3 Set
Sets are unordered data structures containing Ord values of any type and guaranteeing uniqueness with
in the structure. They are not identical to the mathematical notion of a Set even though they share the
same namesake.

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Insertion insert O(log(n))
Deletion delete O(log(n))
Traversal traverse O(n)
Membership Test member O(log(n))

import qualified Data.Set as Set

set :: Set.Set Integer
set = Set.fromList [1..1000]

293 DATA STRUCTURES

memtest :: Integer -> Bool
memtest elt = Set.member elt set

20.4 Vector
Vectors are high performance single dimensional arrays that come come in six variants, two for each of
the following types of a mutable and an immutable variant.

Functionality Function Time Complexity
Initialization empty O(1)
Size length O(1)
Indexing (!) O(1)
Append append O(n)
Traversal traverse O(n)

• Data.Vector
• Data.Vector.Storable
• Data.Vector.Unboxed

The most notable feature of vectors is constant time memory access with ((!)) as well as variety of
efficient map, fold and scan operations on top of a fusion framework that generates surprisingly optimal
code.

fromList :: [a] -> Vector a
toList :: Vector a -> [a]
(!) :: Vector a -> Int -> a
map :: (a -> b) -> Vector a -> Vector b
foldl :: (a -> b -> a) -> a -> Vector b -> a
scanl :: (a -> b -> a) -> a -> Vector b -> Vector a
zipWith :: (a -> b -> c) -> Vector a -> Vector b -> Vector c
iterateN :: Int -> (a -> a) -> a -> Vector a

import Data.Vector.Unboxed as V

norm :: Vector Double -> Double
norm = sqrt . V.sum . V.map (\x -> x*x)

example1 :: Double
example1 = norm $ V.iterateN 100000000 (+1) 0.0

20.5 Mutable Vectors
Mutable vectors are variants of vectors which allow inplace updates.

DATA STRUCTURES 294

Functionality Function Time Complexity
Initialization empty O(1)
Size length O(1)
Indexing (!) O(1)
Append append O(n)
Traversal traverse O(n)
Update modify O(1)
Read read O(1)
Write write O(1)

freeze :: MVector (PrimState m) a -> m (Vector a)
thaw :: Vector a -> MVector (PrimState m) a

Within the IO monad we can perform arbitrary read and writes on the mutable vector with constant
time reads and writes. When needed a static Vector can be created to/from the MVector using the
freeze/thaw functions.

import GHC.Prim
import Control.Monad
import Control.Monad.ST
import Control.Monad.Primitive

import Data.Vector.Unboxed (freeze)
import Data.Vector.Unboxed.Mutable
import qualified Data.Vector.Unboxed as V

example :: PrimMonad m => m (V.Vector Int)
example = do

v <- new 10
forM_ [0..9] $ \i ->

write v i (2*i)
freeze v

-- vector computation in IO
vecIO :: IO (V.Vector Int)
vecIO = example

-- vector computation in ST
vecST :: ST s (V.Vector Int)
vecST = example

main :: IO ()
main = do
vecIO >>= print
print $ runST vecST

The vector library itself normally does bounds checks on index operations to protect against memory

295 DATA STRUCTURES

corruption. This can be enabled or disabled on the library level by compiling with boundschecks cabal
flag.

20.6 Unordered Containers
Both the HashMap and HashSet are purely functional data structures that are drop in replacements for
the containers equivalents but with more efficient space and time performance. Additionally all stored
elements must have a Hashable instance. These structures have different time complexities for insertions
and lookups.

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(log(n))
Insertion insert O(log(n))
Traversal traverse O(n)

fromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k v
lookup :: (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v

import qualified Data.HashSet as S
import qualified Data.HashMap.Lazy as M

example1 :: M.HashMap Int Char
example1 = M.fromList $ zip [1..10] ['a'..]

example2 :: S.HashSet Int
example2 = S.fromList [1..10]

See: Announcing Unordered Containers

20.7 Hashtables
Hashtables provides hashtables with efficient lookup within the ST or IO monad. These have constant
time lookup like most languages:

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(1)
Insertion insert O(1) amortized
Traversal traverse O(n)

http://blog.johantibell.com/2012/03/announcing-unordered-containers-02.html

DATA STRUCTURES 296

import Prelude hiding (lookup)

import Control.Monad.ST
import Data.HashTable.ST.Basic

-- Hashtable parameterized by ST "thread"
type HT s = HashTable s String String

set :: ST s (HT s)
set = do
ht <- new
insert ht "key" "value1"
return ht

get :: HT s -> ST s (Maybe String)
get ht = do
val <- lookup ht "key"
return val

example :: Maybe String
example = runST (set >>= get)

new :: ST s (HashTable s k v)
insert :: (Eq k, Hashable k) => HashTable s k v -> k -> v -> ST s ()
lookup :: (Eq k, Hashable k) => HashTable s k v -> k -> ST s (Maybe v)

20.8 Graphs
The Graph module in the containers library is a somewhat antiquated API for working with directed
graphs. A little bit of data wrapping makes it a little more straightforward to use. The library is not
necessarily well-suited for large graph-theoretic operations but is perfectly fine for example, to use in a
typechecker which needs to resolve strongly connected components of the module definition graph.

import Data.Tree
import Data.Graph

data Grph node key = Grph
{ _graph :: Graph
, _vertices :: Vertex -> (node, key, [key])
}

fromList :: Ord key => [(node, key, [key])] -> Grph node key
fromList = uncurry Grph . graphFromEdges'

vertexLabels :: Functor f => Grph b t -> (f Vertex) -> f b
vertexLabels g = fmap (vertexLabel g)

297 DATA STRUCTURES

vertexLabel :: Grph b t -> Vertex -> b
vertexLabel g = (\(vi, _, _) -> vi) . (_vertices g)

-- Topologically sort graph
topo' :: Grph node key -> [node]
topo' g = vertexLabels g $ topSort (_graph g)

-- Strongly connected components of graph
scc' :: Grph node key -> [[node]]
scc' g = fmap (vertexLabels g . flatten) $ scc (_graph g)

So for example we can construct a simple graph:

ex1 :: [(String, String, [String])]
ex1 = [

("a","a",["b"]),
("b","b",["c"]),
("c","c",["a"])

]

ts1 :: [String]
ts1 = topo' (fromList ex1)
-- ["a","b","c"]

sc1 :: [[String]]
sc1 = scc' (fromList ex1)
-- [["a","b","c"]]

Or with two strongly connected subgraphs:

DATA STRUCTURES 298

ex2 :: [(String, String, [String])]
ex2 = [

("a","a",["b"]),
("b","b",["c"]),
("c","c",["a"]),

("d","d",["e"]),
("e","e",["f", "e"]),
("f","f",["d", "e"])

]

ts2 :: [String]
ts2 = topo' (fromList ex2)
-- ["d","e","f","a","b","c"]

sc2 :: [[String]]
sc2 = scc' (fromList ex2)
-- [["d","e","f"],["a","b","c"]]

See: GraphSCC

20.9 Graph Theory
The fgl library provides a more efficient graph structure and a wide variety of common graph-theoretic
operations. For example calculating the dominance frontier of a graph shows up quite frequently in control
flow analysis for compiler design.

import qualified Data.Graph.Inductive as G

cyc3 :: G.Gr Char String
cyc3 = G.buildGr

[([("ca",3)],1,'a',[("ab",2)]),
([],2,'b',[("bc",3)]),
([],3,'c',[])]

http://hackage.haskell.org/package/GraphSCC

299 DATA STRUCTURES

-- Loop query
ex1 :: Bool
ex1 = G.hasLoop x

-- Dominators
ex2 :: [(G.Node, [G.Node])]
ex2 = G.dom x 0

x :: G.Gr Int ()
x = G.insEdges edges gr
where
gr = G.insNodes nodes G.empty
edges = [(0,1,()), (0,2,()), (2,1,()), (2,3,())]
nodes = zip [0,1 ..] [2,3,4,1]

20.10 DList

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(log(n))
Insertion insert O(log(n))
Traversal traverse O(n)
Append (|>) O(1)
Prepend (<|) O(1)

A dlist is a list-like structure that is optimized for O(1) append operations, internally it uses a Church
encoding of the list structure. It is specifically suited for operations which are append-only and need only
access it when manifesting the entire structure. It is particularly well-suited for use in the Writer monad.

DATA STRUCTURES 300

import Data.DList
import Control.Monad
import Control.Monad.Writer

logger :: Writer (DList Int) ()
logger = replicateM_ 100000 $ tell (singleton 0)

20.11 Sequence
The sequence data structure behaves structurally similar to list but is optimized for append/prepend
operations and traversal.

import Data.Sequence

a :: Seq Int
a = fromList [1,2,3]

a0 :: Seq Int
a0 = a |> 4
-- [1,2,3,4]

a1 :: Seq Int
a1 = 0 <| a
-- [0,1,2,3]

Chapter 21

FFI

Haskell does not exist in a vacuum and will quite often need to interact with or offload computation to
another programming language. Since GHC itself is built on the GCC ecosystem interfacing with libraries
that can be linked via a C ABI is quite natural. Indeed many high performance libraries will call out
to Fortran, C, or C++ code to perform numerical computations that can be linked seamlessly into the
Haskell runtime. There are several approaches to combining Haskell with other languages in the via the
Foreign Function Interface or FFI.

21.1 Pure Functions
Wrapping pure C functions with primitive types is trivial.

/* $(CC) -c simple.c -o simple.o */

int example(int a, int b)
{
return a + b;

}

-- ghc simple.o simple_ffi.hs -o simple_ffi
{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign.C.Types

foreign import ccall safe "example" example
:: CInt -> CInt -> CInt

main = print (example 42 27)

21.2 Storable Arrays
There exists a Storable typeclass that can be used to provide low-level access to the memory underlying
Haskell values. Ptr objects in Haskell behave much like C pointers although arithmetic with them is in
terms of bytes only, not the size of the type associated with the pointer (this differs from C).

301

FFI 302

The Prelude defines Storable interfaces for most of the basic types as well as types in the Foreign.Storable
module.

class Storable a where
sizeOf :: a -> Int
alignment :: a -> Int
peek :: Ptr a -> IO a
poke :: Ptr a -> a -> IO ()

To pass arrays from Haskell to C we can again use Storable Vector and several unsafe operations to
grab a foreign pointer to the underlying data that can be handed off to C. Once we’re in C land, nothing
will protect us from doing evil things to memory!

/* $(CC) -c qsort.c -o qsort.o */
void swap(int *a, int *b)
{

int t = *a;
*a = *b;
*b = t;

}

void sort(int *xs, int beg, int end)
{

if (end > beg + 1) {
int piv = xs[beg], l = beg + 1, r = end;

while (l < r) {
if (xs[l] <= piv) {

l++;
} else {

swap(&xs[l], &xs[--r]);
}

}

swap(&xs[--l], &xs[beg]);
sort(xs, beg, l);
sort(xs, r, end);

}
}

-- ghc qsort.o ffi.hs -o ffi
{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign.Ptr
import Foreign.C.Types

import qualified Data.Vector.Storable as V
import qualified Data.Vector.Storable.Mutable as VM

303 FFI

foreign import ccall safe "sort" qsort
:: Ptr a -> CInt -> CInt -> IO ()

main :: IO ()
main = do
let vs = V.fromList ([1,3,5,2,1,2,5,9,6] :: [CInt])
v <- V.thaw vs
VM.unsafeWith v $ \ptr -> do
qsort ptr 0 9

out <- V.freeze v
print out

The names of foreign functions from a C specific header file can be qualified.

foreign import ccall unsafe "stdlib.h malloc"
malloc :: CSize -> IO (Ptr a)

Prepending the function name with a & allows us to create a reference to the function pointer itself.

foreign import ccall unsafe "stdlib.h &malloc"
malloc :: FunPtr a

21.3 Function Pointers
Using the above FFI functionality, it’s trivial to pass C function pointers into Haskell, but what about
the inverse passing a function pointer to a Haskell function into C using foreign import ccall "wrapper" .

#include <stdio.h>

void invoke(void (*fn)(int))
{

int n = 42;
printf("Inside of C, now we'll call Haskell.\n");
fn(n);
printf("Back inside of C again.\n");

}

{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign
import System.IO
import Foreign.C.Types(CInt(..))

FFI 304

foreign import ccall "wrapper"
makeFunPtr :: (CInt -> IO ()) -> IO (FunPtr (CInt -> IO ()))

foreign import ccall "pointer.c invoke"
invoke :: FunPtr (CInt -> IO ()) -> IO ()

fn :: CInt -> IO ()
fn n = do
putStrLn "Hello from Haskell, here's a number passed between runtimes:"
print n
hFlush stdout

main :: IO ()
main = do
fptr <- makeFunPtr fn
invoke fptr

Will yield the following output:

Inside of C, now we'll call Haskell
Hello from Haskell, here's a number passed between runtimes:
42
Back inside of C again.

21.4 hsc2hs
When doing socket level programming, when handling UDP packets there is a packed C struct with a set
of fields defined by the Linux kernel. These fields are defined in the following C pseudocode.

struct msghdr {
void *msg_name; /* protocol address */
socklen_t msg_namelen; /* size of protocol address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* ancillary data (cmsghdr struct) */
socklen_t msg_controllen; /* length of ancillary data */
int msg_flags; /* flags returned by recvmsg() */

};

If we want to marshall packets to and from Haskell datatypes we need to be able to be able to take
a pointer to memory holding the packet message header and scan the memory into native Haskell types.
This involves knowing some information about the memory offsets for the packet structure. GHC ships
with a tool known as hsc2hs which can be used to read information from C header files to automatically
generate the boilerplate instances of Storable to perform this marshalling. The hsc2hs library acts a
preprocessor over .hsc files and can fill in information as specific by several macros to generate Haskell
source.

305 FFI

#include <file.h>
#const <C_expression>
#peek <struct_type>, <field>
#poke <struct_type>, <field>

For example the following module from the network library must introspect the msghdr struct from
<sys/socket.h> .

#include <sys/types.h>
#include <sys/socket.h>

import Network.Socket.Imports
import Network.Socket.Internal (zeroMemory)
import Network.Socket.Types (SockAddr)

import Network.Socket.ByteString.IOVec (IOVec)

data MsgHdr = MsgHdr
{ msgName :: !(Ptr SockAddr)
, msgNameLen :: !CUInt
, msgIov :: !(Ptr IOVec)
, msgIovLen :: !CSize
}

instance Storable MsgHdr where
sizeOf _ = (#const sizeof(struct msghdr))
alignment _ = alignment (undefined :: CInt)

peek p = do
name <- (#peek struct msghdr, msg_name) p
nameLen <- (#peek struct msghdr, msg_namelen) p
iov <- (#peek struct msghdr, msg_iov) p
iovLen <- (#peek struct msghdr, msg_iovlen) p
return $ MsgHdr name nameLen iov iovLen

poke p mh = do
zeroMemory p (#const sizeof(struct msghdr))
(#poke struct msghdr, msg_name) p (msgName mh)
(#poke struct msghdr, msg_namelen) p (msgNameLen mh)
(#poke struct msghdr, msg_iov) p (msgIov mh)
(#poke struct msghdr, msg_iovlen) p (msgIovLen mh)

Running the command line tool over this module we get the following Haskell output Example.hs . This
can also be run as part of a Cabal build step by including hsc2hs in your build-tools .

$ hsc2hs Example.hsc

FFI 306

import Network.Socket.ByteString.IOVec (IOVec)
import Network.Socket.Imports
import Network.Socket.Internal (zeroMemory)
import Network.Socket.Types (SockAddr)

data MsgHdr
= MsgHdr

{ msgName :: !(Ptr SockAddr),
msgNameLen :: !CUInt,
msgIov :: !(Ptr IOVec),
msgIovLen :: !CSize

}

instance Storable MsgHdr where
sizeOf _ = (56)
alignment _ = alignment (undefined :: CInt)
peek p = do

name <- ((\hsc_ptr -> peekByteOff hsc_ptr 0)) p
nameLen <- ((\hsc_ptr -> peekByteOff hsc_ptr 8)) p
iov <- ((\hsc_ptr -> peekByteOff hsc_ptr 16)) p
iovLen <- ((\hsc_ptr -> peekByteOff hsc_ptr 24)) p
return $ MsgHdr name nameLen iov iovLen

poke p mh = do
zeroMemory p (56)
((\hsc_ptr -> pokeByteOff hsc_ptr 0)) p (msgName mh)
((\hsc_ptr -> pokeByteOff hsc_ptr 8)) p (msgNameLen mh)
((\hsc_ptr -> pokeByteOff hsc_ptr 16)) p (msgIov mh)
((\hsc_ptr -> pokeByteOff hsc_ptr 24)) p (msgIovLen mh)

Chapter 22

Concurrency

GHC Haskell has an extremely advanced parallel runtime that embraces several different models of con-
currency to adapt to needs for different domains. Unlike other languages Haskell does not have any Global
Interpreter Lock or equivalent. Haskell code can be executed in a multi-threaded context and have shared
mutable state and communication channels between threads.

A thread in Haskell is created by forking off from the main process using the forkIO command. This
is performed within the IO monad and yields a ThreadId which can be used to communicate with the new
thread.

forkIO :: IO () -> IO ThreadId

Haskell threads are extremely cheap to spawn, using only 1.5KB of RAM depending on the platform and
are much cheaper than a pthread in C. Calling forkIO 106 times completes just short of 1s. Additionally,
functional purity in Haskell also guarantees that a thread can almost always be terminated even in the
middle of a computation without concern.

See:

• The Scheduler

22.1 Sparks
The most basic “atom” of parallelism in Haskell is a spark. It is a hint to the GHC runtime that a
computation can be evaluated to weak head normal form in parallel.

rpar :: a -> Eval a
rseq :: Strategy a
rdeepseq :: NFData a => Strategy a

runEval :: Eval a -> a

rpar a spins off a separate spark that evaluates a to weak head normal form and places the compu-
tation in the spark pool. When the runtime determines that there is an available CPU to evaluate the
computation it will evaluate (convert) the spark. If the main thread of the program is the evaluator
for the spark, the spark is said to have fizzled. Fizzling is generally bad and indicates that the logic or
parallelism strategy is not well suited to the work that is being evaluated.

307

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Scheduler#TheScheduler

CONCURRENCY 308

The spark pool is also limited (but user-adjustable) to a default of 8000 (as of GHC 7.8.3). Sparks
that are created beyond that limit are said to overflow.

-- Evaluates the arguments to f in parallel before application.
par2 f x y = x `rpar` y `rpar` f x y

An argument to rseq forces the evaluation of a spark before evaluation continues.

Action Description
Fizzled The resulting value has already been evaluated by the main thread so the spark need not be converted.
Dud The expression has already been evaluated, the computed value is returned and the spark is not converted.
GC'd The spark is added to the spark pool but the result is not referenced, so it is garbage collected.
Overflowed Insufficient space in the spark pool when spawning.

The parallel runtime is necessary to use sparks, and the resulting program must be compiled with
-threaded . Additionally the program itself can be specified to take runtime options with -rtsopts such

as the number of cores to use.

ghc -threaded -rtsopts program.hs
./program +RTS -s N8 -- use 8 cores

The runtime can be asked to dump information about the spark evaluation by passing the -s flag.

$./spark +RTS -N4 -s

Tot time (elapsed) Avg pause Max pause
Gen 0 5 colls, 5 par 0.02s 0.01s 0.0017s 0.0048s
Gen 1 3 colls, 2 par 0.00s 0.00s 0.0004s 0.0007s

Parallel GC work balance: 1.83% (serial 0%, perfect 100%)

TASKS: 6 (1 bound, 5 peak workers (5 total), using -N4)

SPARKS: 20000 (20000 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

The parallel computations themselves are sequenced in the Eval monad, whose evaluation with
runEval is itself a pure computation.

example :: (a -> b) -> a -> a -> (b, b)
example f x y = runEval $ do
a <- rpar $ f x
b <- rpar $ f y
rseq a
rseq b
return (a, b)

309 CONCURRENCY

22.2 Threads
For fine-grained concurrency and parallelism, Haskell has a lightweight thread system that schedules
logical threads on the available operating system threads. These lightweight threads are called unbound
threads, while native operating systems are called bound threads since they are bound to a single operating
system thread. The functions to spawn an run tasks inside these threads all live in the IO monad. The
number of possible simultaneous threads is given by the getNumCapabilities functions based on the system
environment.

forkIO :: IO () -> IO ThreadId
forkOS :: IO () -> IO ThreadId
runInBoundThread :: IO a -> IO a
runInUnboundThread :: IO a -> IO a
getNumCapabilities :: IO Int
isCurrentThreadBound :: IO Bool

Managed threads work with the runtime system’s IO manager which will schedule and manage cooper-
ative multitaksing and polling. When a individual unbound thread is blocked polling on a file description
or lock it will yield to another runnable thread managed by the runtime. This yield action can also be
explicitly invoked with the yield function. A thread can also schedule a wait using threadDelay to yield
to the scheduler for a fixed interval given in microseconds.

yield :: IO ()
threadDelay :: Int -> IO ()

Once a thread is forked the fork action will give back a ThreadId which can be used to call actions
and kill the thread from another context. Inside of a running thread the current ThreadId can be queried
with myThreadId .

myThreadId :: IO ThreadId
killThread :: ThreadId -> IO ()

An exception can also be raised in a given ThreadId given an instance of Exception typeclass.

throwTo :: Exception e => ThreadId -> e -> IO ()

When individually polling on file descriptors there are several functions that can schedule the thread
to wake up again when the given file is given a wake event from the kernel. The following functions will
yield the current thread waiting on either a read or write event on the given file description Fd .

threadWaitRead :: Fd -> IO ()
threadWaitWrite :: Fd -> IO ()

CONCURRENCY 310

22.3 IORef
IORef is a mutable reference that can be read and writen to within the IO monad. It is the simplest most

low-level mutable reference provided by the base library.

newIORef :: a -> IO (IORef a)
writeIORef :: IORef a -> a -> IO ()
readIORef :: IORef a -> IO a
modifyIORef' :: IORef a -> (a -> a) -> IO ()

For example we could construct two IORef s which mutably hold the balances for two imaginary bank
accounts. These references can be passed to another IO function which can update the values in place.

import Data.IORef

example :: IO Integer
example = do
account1 <- newIORef 5000
account2 <- newIORef 1000
transfer 500 account1 account2
readIORef account1

transfer :: Integer -> IORef Integer -> IORef Integer -> IO ()
transfer n from to = do

modifyIORef from (+ (-n))
modifyIORef to (+ n)

There are also several atomic functions to update IORef when working with the threaded runtime.

atomicWriteIORef :: IORef a -> a -> IO ()
atomicModifyIORef :: IORef a -> (a -> (a, b)) -> IO b

The atomic modify function atomicModifyIORef reads the value of r and applies the function f to r

giving back (a',b) . Then value r is updated with the new value a' and b is the return value. Both
the read and the write are done atomically so it is not possible that any value will alter the underlying
IORef between the read and write.

Normally IORef is garbage collected like any other value. Once it is out of scope and the runtime has
no more references to it, the runtime will collect the thunk holding the IORef as well as the value the
underlying pointer points at. Sometimes when working with these references will require adding additional
finalisation logic.

mkWeakIORef :: IORef a -> IO () -> IO (Weak (IORef a))

The mkWeakIORef attaches a finalizer function in the second argument which is run when the value is
garbage collected.

311 CONCURRENCY

22.4 MVars
MVars are mutable references like IORefs that can be used to share mutable state between threads.
An MVar has two states empty and full. Reading from an empty MVar will block the current thread.
Writing to a full MVar will also block the current thread. Thus only one value can be held inside the
MVar allowing us to synchronize the value across threads. MVars are building blocks for many higher
concurrent primitives which use them under the hood.

An MVar can either be initialised in an empty state or with a supplied value.

newEmptyMVar :: IO (MVar a)
newMVar :: a -> IO (MVar a)

The function takeMVar operates like a read returning the value, but once the value is read the state of
the underlying MVar is left empty. This read is performed once for the first thread to wake up polling for
the read.

takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()
readMVar :: MVar a -> IO a
swapMVar :: MVar a -> a -> IO a
isEmptyMVar :: MVar a -> IO Bool

As an example consider a multithreaded scenario where a second thread is created which polls on
atomically on an MVar update.

import Control.Concurrent
import Control.Monad
import Prelude hiding (take)

take :: MVar [Char] -> IO ()
take m = forever $ do
x <- takeMVar m
putStrLn x

put :: MVar [Char] -> IO ()
put m = do
replicateM_ 10 $ do
threadDelay 100000
putMVar m "Value set."

example :: IO ()
example = do
m <- newEmptyMVar
forkIO (take m)
put m

If a thread is left sleeping waiting on an MVar and the runtime no longer has any references to code
which can write to the MRef (i.e. all references to the MVar are garbage collected) the thread will be
thrown the exception BlockedIndefinitelyOnMVar since no value can subsequently be written to it.

CONCURRENCY 312

22.5 TVar
TVars are transactional mutable variables which can be read and written to within in the STM monad.
The STM monad provides support for Software Transactional Memory which is a higher level abstrac-
tion for concurrent communication that doesn’t require explict thread maintenance and has lovely easy
compositional nature.

The STM monad magically hooks into the runtime system and provides two key operations atomically
and retry which allow monadic blocks of STM actions to be performed atomically and passed around
symbolically. In the event that the runtime fails to commit a transaction, the retry function can rerun
the logic contained in a STM a .

atomically :: STM a -> IO a
retry :: STM a

TVars can be created just like IORefs but instead of being in IO they can also be created with the
STM monad.

newTVar :: a -> STM (TVar a)
newTVarIO :: a -> IO (TVar a)

Read, writes and updates proceed exactly like IORef updates but inside of STM.

readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()
modifyTVar :: TVar a -> (a -> a) -> STM ()

As an example consider the IORef account transfers from above, but instead the two modifyTVar actions
are performed atomically inside of the transfer function.

import Control.Concurrent
import Control.Concurrent.STM
import Control.Concurrent.STM.TVar

example :: IO Integer
example = do
account1 <- atomically $ newTVar 5000
account2 <- atomically $ newTVar 1000
atomically (transfer 500 account1 account2)
readTVarIO account1

transfer :: Integer -> TVar Integer -> TVar Integer -> STM ()
transfer n from to = do

modifyTVar from (+ (-n))
modifyTVar to (+ n)

313 CONCURRENCY

There is an additional TMVar which behaves precisely like the traditional MVar (i.e. it has an empty
and full state) but which is embedded in IO. It is has precisely the same semantics as MVar but emits
values within STM.

-- Control.Concurrent.STM.TMVar
newTMVar :: a -> STM (TMVar a)
putTMVar :: TMVar a -> a -> STM ()
takeTMVar :: TMVar a -> STM a

22.6 Chans
Channels are unbounded queues to which an unbounded number of values can be written an unbounded
number of times. Channels are implemented using MVars and can be consumed by any number of other
threads which read data off of the Chan. Channels are created, read from and written to using a simple
new , read and write interface just as we’ve seen with other concurrency primitives.

newChan :: IO (Chan a)
readChan :: Chan a -> IO a
writeChan :: Chan a -> a -> IO ()

An example in which a channel is created between a producer and consumer threads is shown below.
This can be used to share data between threads and create work queue background processing systems.

import System.IO
import Control.Monad
import Control.Concurrent
import Control.Concurrent.Chan

producer :: Chan Integer -> IO ()
producer chan = forM_ [0 .. 1000] $ \i -> do
writeChan chan i
putStrLn "Writing to channel."

consumer :: Chan Integer -> IO ()
consumer chan = forever $ do
val <- readChan chan
thread <- myThreadId
putStrLn ("Recieved item in thread: " ++ show thread)
print val

example :: IO ()
example = do
chan <- newChan
forkIO (consumer chan)
forkIO (consumer chan)
forkIO (consumer chan)
forkIO (producer chan)

CONCURRENCY 314

pure ()

main :: IO ()
main = do
hSetBuffering stdout LineBuffering
example

There is also an STM variant of Chan called TChan .

newTChan :: STM (TChan a)
readTChan :: TChan a -> STM a
writeTChan :: TChan a -> a -> STM ()

22.7 Semaphores
Semaphores are a concurrency primitive used to control access to a common resource used by multiple
threads. A semaphore is a variable containing an integral value that can be incremented or decremented
by concurrent processes. A semaphore will restrict concurrency to a integral count of consumers called the
limit. The QSem provides an interface for a simple lock semaphore that can be created in IO and polled
on using waitQSem .

newQSem :: Int -> IO QSem
waitQSem :: QSem -> IO ()
signalQSem :: QSem -> IO ()

A simple example of usage:

import Control.Concurrent
import Control.Concurrent.QSem

task :: Integer -> QSem -> IO ()
task index sem = do
waitQSem sem
forkIO $ putStrLn ("Thread: " ++ show index ++ "\n")
signalQSem sem

example :: IO ()
example = do
sem <- newQSem 1
forkIO (task 1 sem)
forkIO (task 2 sem)
forkIO (task 3 sem)
return ()

315 CONCURRENCY

QSem also have a variant QSemN which allows a resource to be acquired and released in a fixed quantity
other than one. The waitQSemN function then takes an integral quantity to wait for.

newQSemN :: Int -> IO QSemN
waitQSemN :: QSemN -> Int -> IO ()

There is also an STM variant of QSem called TSem which has the same semantics.

newTSem :: Integer -> STM TSem
waitTSem :: TSem -> STM ()

22.8 Threadscope
Passing the flag -l generates the eventlog which can be rendered with the threadscope library.

$ ghc -O2 -threaded -rtsopts -eventlog Example.hs
$./program +RTS -N4 -l
$ threadscope Example.eventlog

See:

• Performance profiling with ghc-events-analyze

22.9 Strategies
Sparks themselves form the foundation for higher level parallelism constructs known as strategies which
adapt spark creation to fit the computation or data structure being evaluated. For instance if we wanted

http://www.well-typed.com/blog/86/

CONCURRENCY 316

to evaluate both elements of a tuple in parallel we can create a strategy which uses sparks to evaluate
both sides of the tuple.

type Strategy a = a -> Eval a
using :: a -> Strategy a -> a

import Control.Parallel.Strategies

parPair' :: Strategy (a, b)
parPair' (a, b) = do
a' <- rpar a
b' <- rpar b
return (a', b')

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

serial :: (Int, Int)
serial = (fib 30, fib 31)

parallel :: (Int, Int)
parallel = runEval . parPair' $ (fib 30, fib 31)

This pattern occurs so frequently the combinator using can be used to write it equivalently in operator-
like form that may be more visually appealing to some.

using :: a -> Strategy a -> a
x `using` s = runEval (s x)

parallel ::: (Int, Int)
parallel = (fib 30, fib 31) `using` parPair

For a less contrived example consider a parallel parmap which maps a pure function over a list of a
values in parallel.

import Control.Parallel.Strategies

parMap' :: (a -> b) -> [a] -> Eval [b]
parMap' f [] = return []
parMap' f (a:as) = do
b <- rpar (f a)
bs <- parMap' f as
return (b:bs)

317 CONCURRENCY

result :: [Int]
result = runEval $ parMap' (+1) [1..1000]

The functions above are quite useful, but will break down if evaluation of the arguments needs to be
parallelized beyond simply weak head normal form. For instance if the arguments to rpar is a nested
constructor we’d like to parallelize the entire section of work in evaluated the expression to normal form
instead of just the outer layer. As such we’d like to generalize our strategies so the evaluation strategy for
the arguments can be passed as an argument to the strategy.

Control.Parallel.Strategies contains a generalized version of rpar which embeds additional evaluation
logic inside the rpar computation in Eval monad.

rparWith :: Strategy a -> Strategy a

Using the deepseq library we can now construct a Strategy variant of rseq that evaluates to full normal
form.

rdeepseq :: NFData a => Strategy a
rdeepseq x = rseq (force x)

We now can create a “higher order” strategy that takes two strategies and itself yields a computation
which when evaluated uses the passed strategies in its scheduling.

import Control.DeepSeq
import Control.Parallel.Strategies

evalPair :: Strategy a -> Strategy b -> Strategy (a, b)
evalPair sa sb (a, b) = do
a' <- sa a
b' <- sb b
return (a', b')

parPair :: Strategy a -> Strategy b -> Strategy (a, b)
parPair sa sb = evalPair (rparWith sa) (rparWith sb)

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

serial :: ([Int], [Int])
serial = (a, b)

where
a = fmap fib [0..30]
b = fmap fib [1..30]

CONCURRENCY 318

parallel :: ([Int], [Int])
parallel = (a, b) `using` evalPair rdeepseq rdeepseq
where

a = fmap fib [0..30]
b = fmap fib [1..30]

These patterns are implemented in the Strategies library along with several other general forms and
combinators for combining strategies to fit many different parallel computations.

parTraverse :: Traversable t => Strategy a -> Strategy (t a)
dot :: Strategy a -> Strategy a -> Strategy a
($||) :: (a -> b) -> Strategy a -> a -> b
(.||) :: (b -> c) -> Strategy b -> (a -> b) -> a -> c

See:

• Control.Concurent.Strategies

22.10 STM
Software transactional memory is a technique for demarcating blocks of atomic transactions that are
guaranteed by the runtime to have several properties:

• No parallel processes can read from the atomic block until the transaction commits.
• The current process is isolated cannot see any changes made by other parallel processes.

This is similar to the atomicity that databases guarantee. The stm library provides a lovely composi-
tional interface for building up higher level primitives that can be composed in atomic blocks to build safe
concurrent logic without worrying about deadlocks and memory corruption from threaded and mutable
reference approaches to building parallel algorithms.

atomically :: STM a -> IO a
orElse :: STM a -> STM a -> STM a
retry :: STM a

newTVar :: a -> STM (TVar a)
newTVarIO :: a -> IO (TVar a)
writeTVar :: TVar a -> a -> STM ()
readTVar :: TVar a -> STM a

modifyTVar :: TVar a -> (a -> a) -> STM ()
modifyTVar' :: TVar a -> (a -> a) -> STM ()

The strength of Haskell’s purity guarantees that transactions within STM are pure and can always be
rolled back if a commit fails. An example of usage is shown below.

http://hackage.haskell.org/package/parallel-3.2.0.4/docs/Control-Parallel-Strategies.html

319 CONCURRENCY

import Control.Monad
import Control.Concurrent
import Control.Concurrent.STM

type Account = TVar Double

transfer :: Account -> Account -> Double -> STM ()
transfer from to amount = do

available <- readTVar from
when (amount > available) retry

modifyTVar from (+ (-amount))
modifyTVar to (+ amount)

-- Threads are scheduled non-deterministically.
actions :: Account -> Account -> [IO ThreadId]
actions a b = map forkIO [

-- transfer to
atomically (transfer a b 10)

, atomically (transfer a b (-20))
, atomically (transfer a b 30)

-- transfer back
, atomically (transfer a b (-30))
, atomically (transfer a b 20)
, atomically (transfer a b (-10))

]

main :: IO ()
main = do
accountA <- atomically $ newTVar 60
accountB <- atomically $ newTVar 0

sequence_ (actions accountA accountB)

balanceA <- atomically $ readTVar accountA
balanceB <- atomically $ readTVar accountB

print $ balanceA == 60
print $ balanceB == 0

22.11 Monad Par
Using the Par monad we express our computation as a data flow graph which is scheduled in order of the
connections between forked computations which exchange resulting computations with IVar .

new :: Par (IVar a)
put :: NFData a => IVar a -> a -> Par ()
get :: IVar a -> Par a

CONCURRENCY 320

fork :: Par () -> Par ()
spawn :: NFData a => Par a -> Par (IVar a)

{-# LANGUAGE NoMonadFailDesugaring #-}

import Control.Monad
import Control.Monad.Par

f , g :: Int -> Int
f x = x + 10
g x = x * 10

-- f x g x
-- \ /
-- a + b
-- / \
-- f (a+b) g (a+b)
-- \ /
-- (d,e)

example1 :: Int -> (Int, Int)
example1 x = runPar $ do
[a, b, c, d, e] <- replicateM 5 new
fork (put a (f x))
fork (put b (g x))
a' <- get a
b' <- get b
fork (put c (a' + b'))

321 CONCURRENCY

c' <- get c
fork (put d (f c'))
fork (put e (g c'))
d' <- get d
e' <- get e
return (d', e')

example2 :: [Int]
example2 = runPar $ do
xs <- parMap (+ 1) [1 .. 25]
return xs

-- foldr (+) 0 (map (^2) [1..xs])
example3 :: Int -> Int
example3 n = runPar $ do
let range = (InclusiveRange 1 n)
let mapper x = return (x ^ 2)
let reducer x y = return (x + y)
parMapReduceRangeThresh 10 range mapper reducer 0

22.12 Async
Async is a higher level set of functions that work on top of Control.Concurrent and STM.

async :: IO a -> IO (Async a)
wait :: Async a -> IO a
cancel :: Async a -> IO ()
concurrently :: IO a -> IO b -> IO (a, b)
race :: IO a -> IO b -> IO (Either a b)

import Control.Monad
import Control.Applicative
import Control.Concurrent
import Control.Concurrent.Async
import Data.Time

timeit :: IO a -> IO (a,Double)
timeit io = do
t0 <- getCurrentTime
a <- io
t1 <- getCurrentTime
return (a, realToFrac (t1 `diffUTCTime` t0))

worker :: Int -> IO Int
worker n = do

-- simulate some work
threadDelay (10^2 * n)

CONCURRENCY 322

return (n * n)

-- Spawn 2 threads in parallel, halt on both finished.
test1 :: IO (Int, Int)
test1 = do
val1 <- async $ worker 1000
val2 <- async $ worker 2000
(,) <$> wait val1 <*> wait val2

-- Spawn 2 threads in parallel, halt on first finished.
test2 :: IO (Either Int Int)
test2 = do
let val1 = worker 1000
let val2 = worker 2000
race val1 val2

-- Spawn 10000 threads in parallel, halt on all finished.
test3 :: IO [Int]
test3 = mapConcurrently worker [0..10000]

main :: IO ()
main = do
print =<< timeit test1
print =<< timeit test2
print =<< timeit test3

Chapter 23

Parsing

Parser combinators were originally developed in the Haskell programming language and the last 10 years
have seen a massive amount of refinement and improvements on parser combinator libraries. Today Haskell
has an amazing parser ecosystem.

23.1 Parsec
For parsing in Haskell it is quite common to use a family of libraries known as Parser Combinators
which let us write code to generate parsers which construct themselves from an abstract description of
the grammar described with combinators.

Combinators
<|> The choice operator tries to parse the first argument before proceeding to the second.
many Consumes an arbitrary number of expressions matching the given pattern and returns them as a list.
many1 Like many but requires at least one match.
optional Optionally parses a given pattern returning its value as a Maybe.
try Backtracking operator will let us parse ambiguous matching expressions and restart with a different pattern.

<|> can be chained sequentially to generate a sequence of options.
There are two styles of writing Parsec, one can choose to write with monads or with applicatives.

parseM :: Parser Expr
parseM = do
a <- identifier
char '+'
b <- identifier
return $ Add a b

The same code written with applicatives uses the applicative combinators:

-- | Sequential application.
(<*>) :: f (a -> b) -> f a -> f b

-- | Sequence actions, discarding the value of the first argument.

323

PARSING 324

(*>) :: f a -> f b -> f b
(*>) = liftA2 (const id)

-- | Sequence actions, discarding the value of the second argument.
(<*) :: f a -> f b -> f a
(<*) = liftA2 const

parseA :: Parser Expr
parseA = Add <$> identifier <* char '+' <*> identifier

Now for instance if we want to parse simple lambda expressions we can encode the parser logic as
compositions of these combinators which yield the string parser when evaluated with parse .

import Text.Parsec
import Text.Parsec.String

data Expr
= Var Char
| Lam Char Expr
| App Expr Expr
deriving Show

lam :: Parser Expr
lam = do
char '\\'
n <- letter
string "->"
e <- expr
return $ Lam n e

app :: Parser Expr
app = do
apps <- many1 term
return $ foldl1 App apps

var :: Parser Expr
var = do
n <- letter
return $ Var n

parens :: Parser Expr -> Parser Expr
parens p = do
char '('
e <- p
char ')'
return e

term :: Parser Expr

325 PARSING

term = var <|> parens expr

expr :: Parser Expr
expr = lam <|> app

decl :: Parser Expr
decl = do
e <- expr
eof
return e

test :: IO ()
test = parseTest decl "\\y->y(\\x->x)y"

main :: IO ()
main = test >>= print

23.2 Custom Lexer
In our previous example a lexing pass was not necessary because each lexeme mapped to a sequential
collection of characters in the stream type. If we wanted to extend this parser with a non-trivial set of
tokens, then Parsec provides us with a set of functions for defining lexers and integrating these with the
parser combinators. The simplest example builds on top of the builtin Parsec language definitions which
define a set of most common lexical schemes.

For instance we’ll build on top of the empty language grammar on top of the haskellDef grammar that
uses the Text token instead of string.

{-# LANGUAGE OverloadedStrings #-}

import Text.Parsec
import Text.Parsec.Text
import qualified Text.Parsec.Token as Tok
import qualified Text.Parsec.Language as Lang

import Data.Functor.Identity (Identity)
import qualified Data.Text as T
import qualified Data.Text.IO as TIO

data Expr
= Var T.Text
| App Expr Expr
| Lam T.Text Expr
deriving (Show)

lexer :: Tok.GenTokenParser T.Text () Identity
lexer = Tok.makeTokenParser style

style :: Tok.GenLanguageDef T.Text () Identity
style = Lang.emptyDef
{ Tok.commentStart = "{-"

PARSING 326

, Tok.commentEnd = "-}"
, Tok.commentLine = "--"
, Tok.nestedComments = True
, Tok.identStart = letter
, Tok.identLetter = alphaNum <|> oneOf "_'"
, Tok.opStart = Tok.opLetter style
, Tok.opLetter = oneOf ":!#$%&*+./<=>?@\\^|-~"
, Tok.reservedOpNames = []
, Tok.reservedNames = []
, Tok.caseSensitive = True
}

parens :: Parser a -> Parser a
parens = Tok.parens lexer

reservedOp :: T.Text -> Parser ()
reservedOp op = Tok.reservedOp lexer (T.unpack op)

ident :: Parser T.Text
ident = T.pack <$> Tok.identifier lexer

contents :: Parser a -> Parser a
contents p = do
Tok.whiteSpace lexer
r <- p
eof
return r

var :: Parser Expr
var = do
var <- ident
return (Var var)

app :: Parser Expr
app = do
e1 <- expr
e2 <- expr
return (App e1 e2)

fun :: Parser Expr
fun = do
reservedOp "\\"
binder <- ident
reservedOp "."
rhs <- expr
return (Lam binder rhs)

expr :: Parser Expr
expr = do
es <- many1 aexp
return (foldl1 App es)

aexp :: Parser Expr

327 PARSING

aexp = fun <|> var <|> (parens expr)

test :: T.Text -> Either ParseError Expr
test = parse (contents expr) "<stdin>"

repl :: IO ()
repl = do
str <- TIO.getLine
print (test str)
repl

main :: IO ()
main = repl

See: Text.Parsec.Language

23.3 Simple Parsing
Putting our lexer and parser together we can write down a more robust parser for our little lambda calculus
syntax.

module Parser (parseExpr) where

import Text.Parsec
import Text.Parsec.String (Parser)
import Text.Parsec.Language (haskellStyle)

import qualified Text.Parsec.Expr as Ex
import qualified Text.Parsec.Token as Tok

type Id = String

data Expr
= Lam Id Expr
| App Expr Expr
| Var Id
| Num Int
| Op Binop Expr Expr
deriving (Show)

data Binop = Add | Sub | Mul deriving Show

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser style
where ops = ["->","\\","+","*","-","="]

style = haskellStyle {Tok.reservedOpNames = ops }

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

https://hackage.haskell.org/package/parsec-3.1.9/docs/Text-Parsec-Language.html

PARSING 328

identifier :: Parser String
identifier = Tok.identifier lexer

parens :: Parser a -> Parser a
parens = Tok.parens lexer

contents :: Parser a -> Parser a
contents p = do
Tok.whiteSpace lexer
r <- p
eof
return r

natural :: Parser Integer
natural = Tok.natural lexer

variable :: Parser Expr
variable = do
x <- identifier
return (Var x)

number :: Parser Expr
number = do
n <- natural
return (Num (fromIntegral n))

lambda :: Parser Expr
lambda = do
reservedOp "\\"
x <- identifier
reservedOp "->"
e <- expr
return (Lam x e)

aexp :: Parser Expr
aexp = parens expr

<|> variable
<|> number
<|> lambda

term :: Parser Expr
term = Ex.buildExpressionParser table aexp
where infixOp x f = Ex.Infix (reservedOp x >> return f)

table = [[infixOp "*" (Op Mul) Ex.AssocLeft],
[infixOp "+" (Op Add) Ex.AssocLeft]]

expr :: Parser Expr
expr = do
es <- many1 term
return (foldl1 App es)

parseExpr :: String -> Expr
parseExpr input =

329 PARSING

case parse (contents expr) "<stdin>" input of
Left err -> error (show err)
Right ast -> ast

main :: IO ()
main = getLine >>= print . parseExpr >> main

Trying it out:

�: runhaskell simpleparser.hs
1+2
Op Add (Num 1) (Num 2)

\i -> \x -> x
Lam "i" (Lam "x" (Var "x"))

\s -> \f -> \g -> \x -> f x (g x)
Lam "s" (Lam "f" (Lam "g" (Lam "x" (App (App (Var "f") (Var "x")) (App (Var "g") (Var "x"))))))

23.4 Megaparsec
Megaparsec is a generalisation of parsec which can work with the several input streams.

• Text (strict and lazy)
• ByteString (strict and lazy)
• String = [Char]

Megaparsec is an expanded and optimised form of parsec which can be used to write much larger
complex parsers with custom lexers and Clang-style error message handling.

An example below for the lambda calculus is quite concise:

{-# LANGUAGE OverloadedStrings #-}

import Control.Monad.Combinators
import Data.Text (Text)
import Text.Megaparsec
import Text.Megaparsec.Char

type Parser = Parsec Expr Text

data Expr
= Var Char
| Lam Char Expr
| App Expr Expr
deriving (Eq, Ord, Show)

instance ShowErrorComponent Expr where
showErrorComponent = show

PARSING 330

lam :: Parser Expr
lam = do
char '\\'
n <- letterChar
string "->"
e <- expr
return $ Lam n e

app :: Parser Expr
app = do
apps <- many term
return $ foldl1 App apps

var :: Parser Expr
var = do
n <- letterChar
return $ Var n

parens :: Parser Expr -> Parser Expr
parens p = do
char '('
e <- p
char ')'
return e

term :: Parser Expr
term = var <|> parens expr

expr :: Parser Expr
expr = lam <|> app

decl :: Parser Expr
decl = do
e <- expr
eof
return e

example :: Text
example = "\\y->y(\\x->x)y"

main :: IO ()
main = case parse decl "<stdin>" example of
Left bundle -> putStr (errorBundlePretty bundle)
Right result -> print result

23.5 Attoparsec
Attoparsec is a parser combinator like Parsec but more suited for bulk parsing of large text and binary files
instead of parsing language syntax to ASTs. When written properly Attoparsec parsers can be efficient.

One notable distinction between Parsec and Attoparsec is that backtracking operator (try) is not
present and reflects on attoparsec’s different underlying parser model.

http://www.serpentine.com/blog/2014/05/31/attoparsec/

331 PARSING

For a simple little lambda calculus language we can use attoparsec much in the same we used parsec:

{-# LANGUAGE OverloadedStrings #-}
{-# OPTIONS_GHC -fno-warn-unused-do-bind #-}

import Control.Applicative
import Data.Attoparsec.Text
import qualified Data.Text as T
import qualified Data.Text.IO as T
import Data.List (foldl1')

data Name
= Gen Int
| Name T.Text
deriving (Eq, Show, Ord)

data Expr
= Var Name
| App Expr Expr
| Lam [Name] Expr
| Lit Int
| Prim PrimOp
deriving (Eq, Show)

data PrimOp
= Add
| Sub
| Mul
| Div
deriving (Eq, Show)

data Defn = Defn Name Expr
deriving (Eq, Show)

name :: Parser Name
name = Name . T.pack <$> many1 letter

num :: Parser Expr
num = Lit <$> signed decimal

var :: Parser Expr
var = Var <$> name

lam :: Parser Expr
lam = do
string "\\"
vars <- many1 (skipSpace *> name)
skipSpace *> string "->"
body <- expr
return (Lam vars body)

eparen :: Parser Expr
eparen = char '(' *> expr <* skipSpace <* char ')'

PARSING 332

prim :: Parser Expr
prim = Prim <$> (

char '+' *> return Add
<|> char '-' *> return Sub
<|> char '*' *> return Mul
<|> char '/' *> return Div)

expr :: Parser Expr
expr = foldl1' App <$> many1 (skipSpace *> atom)

atom :: Parser Expr
atom = try lam

<|> eparen
<|> prim
<|> var
<|> num

def :: Parser Defn
def = do
skipSpace
nm <- name
skipSpace *> char '=' *> skipSpace
ex <- expr
skipSpace <* char ';'
return $ Defn nm ex

file :: T.Text -> Either String [Defn]
file = parseOnly (many def <* skipSpace)

parseFile :: FilePath -> IO (Either T.Text [Defn])
parseFile path = do

contents <- T.readFile path
case file contents of

Left a -> return $ Left (T.pack a)
Right b -> return $ Right b

main :: IO (Either T.Text [Defn])
main = parseFile "simple.ml"

For an example try the above parser with the following simple lambda expression.

f = g (x - 1);
g = f (x + 1);
h = \x y -> (f x) + (g y);

Attoparsec adapts very well to binary and network protocol style parsing as well, this is extracted from
a small implementation of a distributed consensus network protocol:

333 PARSING

{-# LANGUAGE OverloadedStrings #-}

import Control.Monad
import Data.Attoparsec.ByteString
import Data.Attoparsec.ByteString.Char8 as A
import Data.ByteString.Char8

data Action
= Success
| KeepAlive
| NoResource
| Hangup
| NewLeader
| Election
deriving (Show)

newtype Sender = Sender ByteString
deriving (Show)

newtype Payload = Payload ByteString
deriving (Show)

data Message
= Message

{ action :: Action,
sender :: Sender,
payload :: Payload

}
deriving (Show)

proto :: Parser Message
proto = do
act <- paction
send <- Sender <$> A.takeTill (== '.')
body <- Payload <$> A.takeTill A.isSpace
endOfLine
return $ Message act send body

paction :: Parser Action
paction = do
c <- anyWord8
case c of
1 -> return Success
2 -> return KeepAlive
3 -> return NoResource
4 -> return Hangup
5 -> return NewLeader
6 -> return Election
_ -> mzero

main :: IO ()
main = do

PARSING 334

let msgtext = "\x01\x6c\x61\x70\x74\x6f\x70\x2e\x33\x2e\x31\x34\x31\x35\x39\x32\x36\x35\x33\x35\x0A"
let msg = parseOnly proto msgtext
print msg

23.6 Configurator
Configurator is a library for configuring Haskell daemons and programs. It uses a simple, but flexible,
configuration language, supporting several of the most commonly needed types of data, along with inter-
polation of strings from the configuration or the system environment.

{-# LANGUAGE OverloadedStrings #-}

import Data.Text
import qualified Data.Configurator as C

data Config = Config
{ verbose :: Bool
, loggingLevel :: Int
, logfile :: FilePath
, dbHost :: Text
, dbUser :: Text
, dbDatabase :: Text
, dbpassword :: Maybe Text
} deriving (Eq, Show)

readConfig :: FilePath -> IO Config
readConfig cfgFile = do
cfg <- C.load [C.Required cfgFile]
verbose <- C.require cfg "logging.verbose"
loggingLevel <- C.require cfg "logging.loggingLevel"
logFile <- C.require cfg "logging.logfile"
hostname <- C.require cfg "database.hostname"
username <- C.require cfg "database.username"
database <- C.require cfg "database.database"
password <- C.lookup cfg "database.password"
return $ Config verbose loggingLevel logFile hostname username database password

main :: IO ()
main = do
cfg <-readConfig "example.config"
print cfg

An example configuration file:

logging
{
verbose = true

335 PARSING

logfile = "/tmp/app.log"
loggingLevel = 3

}

database
{
hostname = "us-east-1.rds.amazonaws.com"
username = "app"
database = "booktown"
password = "hunter2"

}

Configurator also includes an import directive allows the configuration of a complex application to be
split across several smaller files, or configuration data to be shared across several applications.

23.7 Optparse Applicative
Optparse-applicative is a combinator library for building command line interfaces that take in various user
flags, commands and switches and maps them into Haskell data structures that can handle the input. The
main interface is through the applicative functor Parser and various combinators such as strArgument and
flag which populate the option parsing table with some monadic action which returns a Haskell value.

The resulting sequence of values can be combined applicatively into a larger Config data structure that
holds all the given options. The --help header is also automatically generated from the combinators.

./optparse
Usage: optparse.hs [filename...] [--quiet] [--cheetah]

Available options:
-h,--help Show this help text
filename... Input files
--quiet Whether to shut up.
--cheetah Perform task quickly.

import Data.List
import Data.Monoid
import Options.Applicative

data Opts = Opts
{ _files :: [String]
, _quiet :: Bool
, _fast :: Speed
}

data Speed = Slow | Fast

options :: Parser Opts
options = Opts <$> filename <*> quiet <*> fast

PARSING 336

where
filename :: Parser [String]
filename = many $ argument str $

metavar "filename..."
<> help "Input files"

fast :: Parser Speed
fast = flag Slow Fast $

long "cheetah"
<> help "Perform task quickly."

quiet :: Parser Bool
quiet = switch $

long "quiet"
<> help "Whether to shut up."

greet :: Opts -> IO ()
greet (Opts files quiet fast) = do
putStrLn "reading these files:"
mapM_ print files

case fast of
Fast -> putStrLn "quickly"
Slow -> putStrLn "slowly"

case quiet of
True -> putStrLn "quietly"
False -> putStrLn "loudly"

opts :: ParserInfo Opts
opts = info (helper <*> options) fullDesc

main :: IO ()
main = execParser opts >>= greet

Optparse Generic

Many optparse-applicative command line parsers can also be generated using Generics from descriptions
of records. This approach is not foolproof but works well enough for simple command line applications
with a few options. For more complex interfaces with subcommands and help information you’ll need to
go back to the optparse-applicative level. For example:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeOperators #-}

import Options.Generic

data Options = Options

337 PARSING

{ verbose :: Bool <?> "Enable verbose mode"
, input :: FilePath <?> "Input file"
, output :: FilePath <?> "Output file"
}
deriving (Generic, Show, ParseRecord)

main :: IO ()
main = do
opts <- getRecord "My CLI"
print (opts :: Options)

23.8 Happy & Alex
Happy is a parser generator system for Haskell, similar to the tool ‘yacc’ for C. It works as a preprocessor
with its own syntax that generates a parse table from two specifications, a lexer file and parser file. Happy
does not have the same underlying parser implementation as parser combinators and can effectively work
with left-recursive grammars without explicit factorization. It can also easily be modified to track position
information for tokens and handle offside parsing rules for indentation-sensitive grammars. Happy is used
in GHC itself for Haskell’s grammar.

1. Lexer.x
2. Parser.y

Running the standalone commands will take Alex/Happy source files from stdin and generate and
output Haskell modules. Alex and Happy files can contain arbitrary Haskell code that can be escaped to
the output.

$ alex Lexer.x -o Lexer.hs
$ happy Parser.y -o Parser.hs

The generated modules are not human readable generally and unfortunately error messages are given
in the Haskell source, not the Happy source. Anything enclosed in braces is interpreted as literal Haskell
while the code outside the braces is interpeted as parser grammar.

{

-- This is Haskell
module Parser where

}

-- This is Happy
%tokentype { Lexeme Token }
%error { parseError }

%monad { Parse }

PARSING 338

{

-- This is Haskell again
parseExpr :: String -> Either String [Expr]
parseExpr input =
let tokenStream = scanTokens input in
runExcept (expr tokenStream)

}

Happy and Alex can be integrated into a cabal file simply by including the Parser.y and Lexer.x files
inside of the exposed modules and adding them to the build-tools pragma.

exposed-modules: Parser, Lexer
build-tools: alex , happy

Lexer

For instance we could define a little toy lexer with a custom set of tokens.

{
module Lexer (
Token(..),
scanTokens

) where

import Syntax
}

%wrapper "basic"

$digit = 0-9
$alpha = [a-zA-Z]
$eol = [\n]

tokens :-

-- Whitespace insensitive
$eol ;
$white+ ;
print { \s -> TokenPrint }
$digit+ { \s -> TokenNum (read s) }
\= { \s -> TokenEq }
$alpha [$alpha $digit _ \']* { \s -> TokenSym s }

{

data Token
= TokenNum Int

339 PARSING

| TokenSym String
| TokenPrint
| TokenEq
| TokenEOF
deriving (Eq,Show)

scanTokens :: String -> [Token]
scanTokens = alexScanTokens

}

Parser

The associated parser is list of a production rules and a monad to run the parser in. Production rules
consist of a set of options on the left and generating Haskell expressions on the right with indexed metavari-
ables ($1 , $2 , …) mapping to the ordered terms on the left (i.e. in the second term term ~ $1 , term ~
$2).

terms
: term { [$1] }
| term terms { $1 : $2 }

An example parser module:

{
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

module Parser (
parseExpr,

) where

import Lexer
import Syntax

import Control.Monad.Except
}

%name expr
%tokentype { Token }
%monad { Except String } { (>>=) } { return }
%error { parseError }

%token
int { TokenNum $$ }
var { TokenSym $$ }
print { TokenPrint }
'=' { TokenEq }

PARSING 340

%%

terms
: term { [$1] }
| term terms { $1 : $2 }

term
: var { Var $1 }
| var '=' int { Assign $1 $3 }
| print term { Print $2 }

{

parseError :: [Token] -> Except String a
parseError (l:ls) = throwError (show l)
parseError [] = throwError "Unexpected end of Input"

parseExpr :: String -> Either String [Expr]
parseExpr input =

let tokenStream = scanTokens input in
runExcept (expr tokenStream)

}

As a simple input consider the following simple program.

x = 4
print x
y = 5
print y
y = 6
print y

Chapter 24

Streaming

24.1 Lazy IO

The problem with using the usual monadic approach to processing data accumulated through IO is that
the Prelude tools require us to manifest large amounts of data in memory all at once before we can even
begin computation.

mapM :: (Monad m, Traversable t) => (a -> m b) -> t a -> m (t b)
sequence :: (Monad m, Traversable t) => t (m a) -> m (t a)

Reading from the file creates a thunk for the string that forced will then read the file. The problem is
then that this method ties the ordering of IO effects to evaluation order which is difficult to reason about
in the large.

Consider that normally the monad laws (in the absence of seq) guarantee that these computations
should be identical. But using lazy IO we can construct a degenerate case.

import System.IO

main :: IO ()
main = do
withFile "foo.txt" ReadMode $ \fd -> do
contents <- hGetContents fd
print contents

-- "foo\n"

contents <- withFile "foo.txt" ReadMode hGetContents
print contents
-- ""

So what we need is a system to guarantee deterministic resource handling with constant memory usage.
To that end both the Conduits and Pipes libraries solved this problem using different (though largely
equivalent) approaches.

341

STREAMING 342

24.2 Pipes

await :: Monad m => Pipe a y m a
yield :: Monad m => a -> Pipe x a m ()

(>->) :: Monad m
=> Pipe a b m r
-> Pipe b c m r
-> Pipe a c m r

runEffect :: Monad m => Effect m r -> m r
toListM :: Monad m => Producer a m () -> m [a]

Pipes is a stream processing library with a strong emphasis on the static semantics of composition. The
simplest usage is to connect “pipe” functions with a (>->) composition operator, where each component
can await and yield to push and pull values along the stream.

import Pipes
import Pipes.Prelude as P
import Control.Monad
import Control.Monad.Identity

a :: Producer Int Identity ()
a = forM_ [1..10] yield

b :: Pipe Int Int Identity ()
b = forever $ do
x <- await
yield (x*2)
yield (x*3)
yield (x*4)

c :: Pipe Int Int Identity ()
c = forever $ do
x <- await
if (x `mod` 2) == 0

then yield x
else return ()

result :: [Int]
result = P.toList $ a >-> b >-> c

For example we could construct a “FizzBuzz” pipe.

{-# LANGUAGE MultiWayIf #-}

import Pipes

343 STREAMING

import qualified Pipes.Prelude as P

count :: Producer Integer IO ()
count = each [1..100]

fizzbuzz :: Pipe Integer String IO ()
fizzbuzz = do
n <- await
if | n `mod` 15 == 0 -> yield "FizzBuzz"

| n `mod` 5 == 0 -> yield "Fizz"
| n `mod` 3 == 0 -> yield "Buzz"
| otherwise -> return ()

fizzbuzz

main :: IO ()
main = runEffect $ count >-> fizzbuzz >-> P.stdoutLn

To continue with the degenerate case we constructed with Lazy IO, consider than we can now compose
and sequence deterministic actions over files without having to worry about effect order.

import Pipes
import Pipes.Prelude as P
import System.IO

readF :: FilePath -> Producer String IO ()
readF file = do

lift $ putStrLn $ "Opened" ++ file
h <- lift $ openFile file ReadMode
fromHandle h
lift $ putStrLn $ "Closed" ++ file
lift $ hClose h

main :: IO ()
main = runEffect $ readF "foo.txt" >-> P.take 3 >-> stdoutLn

This is a simple sampling of the functionality of pipes. The documentation for pipes is extensive and
great deal of care has been taken make the library extremely thorough. pipes is a shining example of an
accessible yet category theoretic driven design.

See: Pipes Tutorial

24.3 ZeroMQ

bracket :: MonadSafe m => Base m a -> (a -> Base m b) -> (a -> m c) -> m c

As a motivating example, ZeroMQ is a network messaging library that abstracts over traditional
Unix sockets to a variety of network topologies. Most notably it isn’t designed to guarantee any sort of

http://hackage.haskell.org/package/pipes-4.1.0/docs/Pipes-Tutorial.html

STREAMING 344

transactional guarantees for delivery or recovery in case of errors so it’s necessary to design a layer on top
of it to provide the desired behavior at the application layer.

In Haskell we’d like to guarantee that if we’re polling on a socket we get messages delivered in a timely
fashion or consider the resource in an error state and recover from it. Using pipes-safe we can manage
the life cycle of lazy IO resources and can safely handle failures, resource termination and finalization
gracefully. In other languages this kind of logic would be smeared across several places, or put in some
global context and prone to introduce errors and subtle race conditions. Using pipes we instead get a nice
tight abstraction designed exactly to fit this kind of use case.

For instance now we can bracket the ZeroMQ socket creation and finalization within the SafeT monad
transformer which guarantees that after successful message delivery we execute the pipes function as
expected, or on failure we halt the execution and finalize the socket.

import Pipes
import Pipes.Safe
import qualified Pipes.Prelude as P

import System.Timeout (timeout)
import Data.ByteString.Char8
import qualified System.ZMQ as ZMQ

data Opts = Opts
{ _addr :: String -- ^ ZMQ socket address
, _timeout :: Int -- ^ Time in milliseconds for socket timeout
}

recvTimeout :: Opts -> ZMQ.Socket a -> Producer ByteString (SafeT IO) ()
recvTimeout opts sock = do

body <- liftIO $ timeout (_timeout opts) (ZMQ.receive sock [])
case body of

Just msg -> do
liftIO $ ZMQ.send sock msg []
yield msg
recvTimeout opts sock

Nothing -> liftIO $ print "socket timed out"

collect :: ZMQ.Context
-> Opts
-> Producer ByteString (SafeT IO) ()

collect ctx opts = bracket zinit zclose (recvTimeout opts)
where

-- Initialize the socket
zinit = do

liftIO $ print "waiting for messages"
sock <- ZMQ.socket ctx ZMQ.Rep
ZMQ.bind sock (_addr opts)
return sock

-- On timeout or completion guarantee the socket get closed.
zclose sock = do

liftIO $ print "finalizing"
ZMQ.close sock

runZmq :: ZMQ.Context -> Opts -> IO ()

345 STREAMING

runZmq ctx opts = runSafeT $ runEffect $
collect ctx opts >-> P.take 10 >-> P.print

main :: IO ()
main = do
ctx <- ZMQ.init 1
let opts = Opts {_addr = "tcp://127.0.0.1:8000", _timeout = 1000000 }
runZmq ctx opts
ZMQ.term ctx

24.4 Conduits

await :: Monad m => ConduitM i o m (Maybe i)
yield :: Monad m => o -> ConduitM i o m ()

runConduit :: Monad m => ConduitT () Void m r -> m r
(.|) :: Monad m

=> ConduitM a b m ()
-> ConduitM b c m r
-> ConduitM a c m r

Conduits are conceptually similar though philosophically different approach to the same problem of
constant space deterministic resource handling for IO resources.

The first initial difference is that await function now returns a Maybe which allows different handling
of termination.

Since 1.2.8 the separate connecting and fusing operators are deprecated in favor of a single fusing
operator (.|) .

{-# LANGUAGE MultiWayIf #-}

import Control.Monad.Trans
import Data.Conduit
import qualified Data.Conduit.List as CL

source :: ConduitT () Int IO ()
source = CL.sourceList [1 .. 100]

conduit :: ConduitT Int String IO ()
conduit = do

val <- await
case val of
Nothing -> return ()
Just n -> do

if | n `mod` 15 == 0 -> yield "FizzBuzz"
| n `mod` 5 == 0 -> yield "Fizz"
| n `mod` 3 == 0 -> yield "Buzz"

STREAMING 346

| otherwise -> return ()
conduit

sink :: ConduitT String o IO ()
sink = CL.mapM_ putStrLn

main :: IO ()
main = runConduit $ source .| conduit .| sink

Chapter 25

Cryptography

Recently Haskell has seen quite a bit of development of cryptography libraries as it serves as an excellent
language for working with and manipulating algebraic structures found in cryptographic primitives. In
addition to most of the basic hashing, elliptic curve and cipher suites libraries, Haskell has a excellent
standard cryptography library called cryptonite which provides the standard kitchen sink of most modern
primitives. These include hash functions, elliptic curve cryptography, digital signature algorithms, ciphers,
one time passwords, entropy generation and safe memory handling.

25.1 SHA Hashing
A cryptographic hash function is a special class of hash function that has certain properties which make it
suitable for use in cryptography. It is a mathematical algorithm that maps data of arbitrary size to a bit
string of a fixed size (a hash function) which is designed to also be a one-way function, that is, a function
which is infeasible to invert.

SHA-256 is a cryptographic hash function from the SHA-2 family and is standardized by NIST. It
produces a 256-bit message digest.

{-# LANGUAGE OverloadedStrings #-}

import Crypto.Hash (SHA256, Digest, hash)
import Data.ByteArray (convert)
import Data.ByteString.Char8 (ByteString)

v1 :: ByteString
v1 = "The quick brown fox jumps over the lazy dog"

h1 :: Digest SHA256
h1 = hash v1

s1 :: ByteString
s1 = convert h1

main :: IO ()
main = do
print v1
print h1
print s1

347

CRYPTOGRAPHY 348

{-# LANGUAGE OverloadedStrings #-}

import Crypto.Hash (Keccak_256, Digest, hash)
import Data.ByteArray (convert)
import Data.ByteString.Char8 (ByteString)

v1 :: ByteString
v1 = "The quick brown fox jumps over the lazy dog"

h1 :: Digest Keccak_256
h1 = hash v1

s1 :: ByteString
s1 = convert h1

main :: IO ()
main = do
print v1
print h1
print s1

25.2 Password Hashing
Modern applications should use one of either the Blake2 or Argon2 hashing algorithms for storing pass-
words in a database as part of an authentication workflow.

To use Argon2:

{-# LANGUAGE OverloadedStrings #-}

module Argon where

import Crypto.Error
import Crypto.KDF.Argon2
import Crypto.Random (getRandomBytes)
import Data.ByteString

passHash :: IO ()
passHash = do
salt <- getRandomBytes 16 :: IO ByteString
out <- throwCryptoErrorIO (hash defaultOptions ("hunter2" :: ByteString) salt 256)
print (out :: ByteString)

To use Blake2:

{-# LANGUAGE OverloadedStrings #-}

349 CRYPTOGRAPHY

module Blake2 where

import Crypto.Hash
import Data.ByteString

passHash :: Digest Blake2b_256
passHash = hash ("hunter2" :: ByteString)

25.3 Curve25519 Diffie-Hellman
Curve25519 is a widely used Diffie-Hellman function suitable for a wide variety of applications. Private
and public keys using Curve25519 are 32 bytes each. Elliptic curve Diffie-Hellman is a protocol in which
two parties can exchange their public keys in the clear and generate a shared secret which can be used to
share information across a secure channel.

A private key is a large integral value which is multiplied by the base point on the curve to generate
the public key. Going to backwards from a public key requires one to solve the elliptic curve discrete
logarithm which is believed to be computationally infeasible.

generateSecretKey :: MonadRandom m => m SecretKey
toPublic :: SecretKey -> PublicKey

Diffie-Hellman key exchange be performed by executing the function dh over the private and public
keys for Alice and Bob.

dh :: PublicKey -> SecretKey -> DhSecret

An example is shown below:

import Crypto.Error
import qualified Crypto.PubKey.Curve25519 as Curve25519

-- Diffie-Hellman Key Exchange for Curve25519
dh :: IO ()
dh = do
alicePriv <- Curve25519.generateSecretKey
bobPriv <- Curve25519.generateSecretKey
let secret1 = Curve25519.dh (Curve25519.toPublic alicePriv) bobPriv
let secret2 = Curve25519.dh (Curve25519.toPublic bobPriv) alicePriv
print (secret1 == secret2)

See:

• curve25519

https://cr.yp.to/ecdh.html

CRYPTOGRAPHY 350

25.4 Ed25519 EdDSA
EdDSA is a digital signature scheme based on Schnorr signature using the twisted Edwards curve Ed25519
and SHA-512 (SHA-2). It generates succinct (64 byte) signatures and has fast verification times.

{-# LANGUAGE OverloadedStrings #-}

module Ed25519 where

import Crypto.PubKey.Ed25519 as Ed25519
import Data.ByteString

msg :: ByteString
msg = "My example message"

example :: IO ()
example = do
privKey <- Ed25519.generateSecretKey
let pubKey = Ed25519.toPublic privKey
let sig = sign privKey pubKey msg
print sig
print (Ed25519.verify pubKey msg sig)

See Also:

• ed25519

25.5 Secure Memory Handling
When using Haskell for cryptography work and even inside web services, some care must be taken to
ensure that the primitives you are using don’t accidentally expose secrets or user data accidentally. This
can occur in many ways through the mishandling of keys, timing attacks against interactive protocols,
and the insecure wiping of memory.

When using Haskell integers be aware that arithmetic operations are not constant time and are
simply backed by GMP integers. This may or may not be appropriate for your code if you expect
arithmetic operations to be branch-free or have constant time addition or multiplication. If you need
constant arithmetic you will likely have to drop down to C or Assembly and link the resulting code into
your Haskell logic. Many Haskell cryptography libraries do just this.

With regards to timing attacks, take note of which functions are marked as vulnerable to timing attacks
as most of these are marked in public API documentation.

When comparing hashes and unencrypted data for equality also make sure to use an equality test which
is constant time. The default derived instance for Eq does not have this property. The securemem library
provides a SecureMem datatype which can hold an arbitrary sized ByteString and can only be compared
against other SecureMem ByteStrings by a constant time algorithm.

-- import Data.SecureMem
allocateSecureMem :: Int -> IO SecureMem
finalizeSecureMem :: SecureMem -> IO ()
toSecureMem :: ByteString -> SecureMem

https://ed25519.cr.yp.to/

351 CRYPTOGRAPHY

This data structure will also automatically scrub its bytes with a runtime integrated finalizer on
the pointer to the underlying memory. This ensures that as soon as the value is garbage collected, its
underlying memory is wiped to zero values and does not linger on the process’s memory.

25.6 AES Encryption

AES (Advanced Encryption Standard) is a symmetric block cipher standardized by NIST. The cipher
block size is fixed at 16 bytes and it is encrypted using a key of 128, 192 or 256 bits. AES is common
cipher standard for symmetric encryption and used heavily in internet protocols.

An example of encrypting and decrypting data using the cryptonite library is shown below:

{-# LANGUAGE OverloadedStrings #-}

module AES where

import Crypto.Cipher.AES
import Crypto.Cipher.Types
import Crypto.Error
import Crypto.Random.Types
import Data.ByteString

type AesKey = ByteString

genKey :: IO AesKey
genKey = getRandomBytes 32 -- AES256 key size

aesEncrypt :: ByteString -> AesKey -> Either CryptoError ByteString
aesEncrypt input sk =
ctrCombine
<$> init
<*> pure nullIV
<*> pure input

where
init :: Either CryptoError AES256
init = eitherCryptoError $ cipherInit sk

aesDecrypt :: ByteString -> AesKey -> Either CryptoError ByteString
aesDecrypt = aesEncrypt

main :: IO ()
main = do
key <- genKey
let message = "The quick brown fox jumped over the lazy dog."

mcipherText = aesEncrypt message key
case mcipherText of
Right cipherText -> do

print cipherText
print (aesDecrypt cipherText key)

Left err -> print err

CRYPTOGRAPHY 352

25.7 Galois Fields
Many modern cryptographic protocols require the use of finite field arithmetic. Finite fields are algebraic
structures that have algebraic field structure (addition, multiplication, division) and closure

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedLists #-}

module Galois where

import Data.Field.Galois
import Prelude hiding ((/))

-- Prime field
type Fq = Prime 2147483647

exampleFq :: IO ()
exampleFq = do
print ((1 + 0x7FFFFFFF16) :: Fq)
print ((10000 * 10000) :: Fq)
print ((1 / 524287) :: Fq)

-- Polynomial term
data P2

-- Extension field
type Fq2 = Extension P2 Fq

-- Irreducublie monic polynomial extension
instance IrreducibleMonic P2 Fq where
poly _ = X2 + 1

-- Polynomial 2*x^2 + 1 over Fq2
p1 :: Fq2
p1 = [1, 2]

p2 :: Fq2
p2 = (p1 + p1) * 2

p3 :: Bool
p3 = p2 / p1 == 4

See:
• galois-field

25.8 Elliptic Curves
Elliptic curves are a type of algebraic structure that are used heavily in cryptography. Most generally
elliptic curves are families of curves to second order plane curves in two variables defined over finite

https://hackage.haskell.org/package/galois-field

353 CRYPTOGRAPHY

fields. These elliptic curves admit a group construction over the curve points which has multiplication
and addition. For finite fields with large order computing inversions is quite computationally difficult and
gives rise to a trapdoor function which is easy to compute in one direction but difficult in reverse.

There are many types of plane curves with different coefficients that can be defined. The widely studied
groups are one of the four classes. These are defined in the elliptic-curve library as lifted datatypes which
are used at the type-level to distinguish curve operations.

• Binary
• Edwards
• Montgomery
• Weierstrass

On top of these curves there is an additional degree of freedom in the choice of coordinate system
used. There are many ways to interpret the Cartesian plane in terms of coordinates and some of these
coordinate systems admit more efficient operations for multiplication and addition of points.

• Affine
• Jacobian
• Projective

For example the common Ed25519 curve can be defined as the following group structure defined as a
series of type-level constructions:

type Fr = Prime
7237005577332262213973186563042994240857116359379907606001950938285454250989

type Fq = Prime
57896044618658097711785492504343953926634992332820282019728792003956564819949

type PA = Point Edwards Affine Ed25519 Fq Fr
type PP = Point Edwards Projective Ed25519 Fq Fr

Operations on this can be executed by several type classes functions.

module Example where

import Data.Curve.Edwards.Ed25519 as Ed25519
import Protolude

-- generate random affine point
p1 :: Ed25519.PA
p1 = Ed25519.gen

-- generate affine point by multiply by field coefficient
p2 :: Ed25519.PA
p2 = Ed25519.mul p1 (3 :: Ed25519.Fr)

-- point addition
p3 :: Ed25519.PA
p3 = Ed25519.add p1 p2

-- point identity
p4 :: Ed25519.PA

CRYPTOGRAPHY 354

p4 = Ed25519.id

-- point doubling
p5 :: Ed25519.PA
p5 = Ed25519.dbl p1

-- point inversion
p6 :: Ed25519.PA
p6 = Ed25519.inv p1

-- Frobenius endomorphism
p7 :: Ed25519.PA
p7 = Ed25519.frob p1

-- base point
p8 :: Ed25519.PA
p8 = Ed25519.gA

-- convert affine coordinates to projective coordinates
p9 :: Ed25519.PP
p9 = Ed25519.fromA p8

-- get y coordinate (point from Fq) from coordinate
p10 :: Maybe Ed25519.Fq
p10 = Ed25519.yX p1 (2 :: Fq)

See: elliptic-curve

25.9 Pairing Cryptography
Cryptographic pairings are a novel technique that allows us to construct bilinear mappings of the form:

e : G1 × G2 → GT

These are bilinear over group addition and multiplication.

e(g1 + g2, h) = e(g1, h)e(g2, h)

e(g, h1 + h2) = e(g, h1)e(g, h2)
There are many types of pairings that can be computed. The pairing library implements the Ate

pairing over several elliptic curve groups including the Barreto-Naehrig family and the BLS12-381 curve.
These types of pairings are used quite frequently in modern cryptographic protocols such as the construc-
tion of zkSNARKs.

{-# LANGUAGE OverloadedLists #-}

module Main where

import Data.Curve.Weierstrass (Point (A), mul')
import Data.Group (pow)

https://hackage.haskell.org/package/elliptic-curve

355 CRYPTOGRAPHY

import Data.Pairing.BN254 (BN254, G1, G2, pairing)

p :: G1 BN254
p =
A
1368015179489954701390400359078579693043519447331113978918064868415326638035
9918110051302171585080402603319702774565515993150576347155970296011118125764

q :: G2 BN254
q =
A
[2725019753478801796453339367788033689375851816420509565303521482350756874229,

7273165102799931111715871471550377909735733521218303035754523677688038059653
]
[2512659008974376214222774206987427162027254181373325676825515531566330959255,

957874124722006818841961785324909313781880061366718538693995380805373202866
]

main :: IO ()
main = do
putStrLn "e(P, Q):"
print (pairing p q)
putStrLn "e(P, Q) is bilinear:"
print $ pairing (mul' p a) (mul' q b) == pow (pairing p q) (a * b)
where
a = 2 :: Int
b = 3 :: Int

See

• Pairing
• Optimal Ate Pairing

25.10 zkSNARKs
zkSNARKS (zero knowledge succinct non-interactive arguments of knowledge) are a modern cryptographic
construction that enable two parties called the Prover and Verifier to convince the verifier that a general
computational statement is true without revealing anything else.

Haskell has a variety of libraries for building zkSNARK protocols including libraries to build circuit
representations of embedded domain specific languages and produce succinct pairing based zero knowledge
proofs.

• zkp - Implementation of the Groth16 protocol based on bilinear pairings.
• bulletproofs - Implementation of the Bulletproofs protocol.
• arithmetic-circuits Generic data structures for construction arithmetic circuits and Rank-1 constraint

systems (R1CS) in Haskell.

https://github.com/adjoint-io/pairing
https://tools.ietf.org/html/draft-kato-optimal-ate-pairings-00
https://github.com/adjoint-io/zkp
https://hackage.haskell.org/package/bulletproofs
https://github.com/adjoint-io/arithmetic-circuits

CRYPTOGRAPHY 356

Chapter 26

Dates and Times

26.1 time
Haskell’s datetime library is unambiguously called time it exposes six core data structure which hold
temporal quantities of various precisions.

• Day - Datetime triple of day, month, year in the Gregorian calendar system
• TimeOfDay - A clock time measure in hours, minutes and seconds
• UTCTime - A unix time measured in seconds since the Unix epoch.
• TimeZone - A ISO8601 timezone
• LocalTime - A Day and TimeOfDay combined into a aggregate type.
• ZonedTime - A LocalTime combined with TimeZone.

There are several delta types that correspond to changes in time measured in various units of days or
seconds.

• NominalDiffTime - Time delta measured in picoseconds.
• CalendarDiffDays - Calendar delta measured in months and days offset.
• CalendarDiffTime - Time difference measured in months and picoseconds.

module Time where

import Data.Maybe
import Data.Time

-- Example date:
-- April 5, 2063
day :: Day
day = fromJust $ fromGregorianValid year month day
where
year = 2063
month = 4
day = 5

-- Adding day deltas to dates
delta :: Day
delta = 3 `addDays` day

-- Adding month deltas to dates

357

DATES AND TIMES 358

deltaMo :: Day
deltaMo = 8 `addGregorianMonthsClip` day

-- Number of days between two dates
diff :: Integer
diff = delta `diffDays` day

-- Example time
time :: IO UTCTime
time = getCurrentTime

-- Add NominalDiffTime (i.e. picoseconds) to the time
-- Add 5 minutes.
-- Num instance converts from integral seconds to picoseconds
tdelta :: IO UTCTime
tdelta = do
time <- getCurrentTime
pure (300 `addUTCTime` time)

-- Get the current time zone
zone :: IO TimeZone
zone = getCurrentTimeZone

-- Get current time with timezone attached
zonetime :: IO ZonedTime
zonetime = getZonedTime

timer :: IO NominalDiffTime
timer = do
start <- getCurrentTime
end <- getCurrentTime
pure (diffUTCTime end start)

26.2 ISO8601
The ISO standard for rendering and parsing datetimes can work with the default temporal datatypes.
These work bidirectionally for both parsing and pretty printing. Simple use case is shown below:

module Time where

import Data.Maybe
import Data.Time
import Data.Time.Format.ISO8601

-- April 5, 2063
day :: Day
day = fromJust (fromGregorianValid year month day)
where

year = 2063
month = 4

359 DATES AND TIMES

day = 5

printing :: IO ()
printing = do
t <- getCurrentTime
zt <- getZonedTime
print (iso8601Show day)
print (iso8601Show t)
print (iso8601Show zt)

parsing :: IO ()
parsing = do
d <- iso8601ParseM "2063-04-05" :: IO Day
t <- iso8601ParseM "2020-01-29T15:03:43.013033515Z" :: IO UTCTime
zt <- iso8601ParseM "2020-01-29T15:03:43.013040029+00:00" :: IO ZonedTime
print d
print t
print zt

DATES AND TIMES 360

Chapter 27

Data Formats

27.1 JSON
Aeson is a library for efficient parsing and generating JSON. It is the canonical JSON library for handling
JSON.

decode :: FromJSON a => ByteString -> Maybe a
encode :: ToJSON a => a -> ByteString
eitherDecode :: FromJSON a => ByteString -> Either String a

fromJSON :: FromJSON a => Value -> Result a
toJSON :: ToJSON a => a -> Value

A point of some subtlety to beginners is that the return types for Aeson functions are polymorphic
in their return types meaning that the resulting type of decode is specified only in the context of your
programs use of the decode function. So if you use decode in a point your program and bind it to a value
x and then use x as if it were an integer throughout the rest of your program, Aeson will select the

typeclass instance which parses the given input string into a Haskell integer.

• Aeson Library

Value

Aeson uses several high performance data structures (Vector, Text, HashMap) by default instead of the
naive versions so typically using Aeson will require that we import them and use OverloadedStrings when
indexing into objects.

The underlying Aeson structure is called Value and encodes a recursive tree structure that models the
semantics of untyped JSON objects by mapping them onto a large sum type which embodies all possible
JSON values.

type Object = HashMap Text Value

type Array = Vector Value

-- | A JSON value represented as a Haskell value.
data Value
= Object !Object

361

https://hackage.haskell.org/package/aeson

DATA FORMATS 362

| Array !Array
| String !Text
| Number !Scientific
| Bool !Bool
| Null

For instance the Value expansion of the following JSON blob:

{
"a": [1,2,3],
"b": 1

}

Is represented in Aeson as the Value :

Object
(fromList

[("a"
, Array (fromList [Number 1.0 , Number 2.0 , Number 3.0])
)

, ("b" , Number 1.0)
])

Let’s consider some larger examples, we’ll work with this contrived example JSON:

{
"id": 1,
"name": "A green door",
"price": 12.50,
"tags": ["home", "green"],
"refs": {

"a": "red",
"b": "blue"

}
}

Unstructured or Dynamic JSON

In dynamic scripting languages it’s common to parse amorphous blobs of JSON without any a priori
structure and then handle validation problems by throwing exceptions while traversing it. We can do the
same using Aeson and the Maybe monad.

363 DATA FORMATS

{-# LANGUAGE OverloadedStrings #-}

import Data.Text
import Data.Aeson
import Data.Vector
import qualified Data.HashMap.Strict as M
import qualified Data.ByteString.Lazy as BL

-- Pull a key out of an JSON object.
(^?) :: Value -> Text -> Maybe Value
(^?) (Object obj) k = M.lookup k obj
(^?) _ _ = Nothing

-- Pull the ith value out of a JSON list.
ix :: Value -> Int -> Maybe Value
ix (Array arr) i = arr !? i
ix _ _ = Nothing

readJSON str = do
obj <- decode str
price <- obj ^? "price"
refs <- obj ^? "refs"
tags <- obj ^? "tags"
aref <- refs ^? "a"
tag1 <- tags `ix` 0
return (price, aref, tag1)

main :: IO ()
main = do
contents <- BL.readFile "example.json"
print $ readJSON contents

Structured JSON

This isn’t ideal since we’ve just smeared all the validation logic across our traversal logic instead of
separating concerns and handling validation in separate logic. We’d like to describe the structure before-
hand and the invalid case separately. Using Generic also allows Haskell to automatically write the serializer
and deserializer between our datatype and the JSON string based on the names of record field names.

{-# LANGUAGE DeriveGeneric #-}

import Data.Text
import Data.Aeson
import GHC.Generics
import qualified Data.ByteString.Lazy as BL

import Control.Applicative

data Refs = Refs
{ a :: Text
, b :: Text

DATA FORMATS 364

} deriving (Show,Generic)

data Data = Data
{ id :: Int
, name :: Text
, price :: Float
, tags :: [Text]
, refs :: Refs
} deriving (Show,Generic)

instance FromJSON Data
instance FromJSON Refs
instance ToJSON Data
instance ToJSON Refs

main :: IO ()
main = do
contents <- BL.readFile "example.json"
let Just dat = decode contents
print $ name dat
print $ a (refs dat)

Now we get our validated JSON wrapped up into a nicely typed Haskell ADT.

Data
{ id = 1
, name = "A green door"
, price = 12
, tags = ["home" , "green"]
, refs = Refs { a = "red" , b = "blue" }
}

The functions fromJSON and toJSON can be used to convert between this sum type and regular Haskell
types with.

data Result a = Error String | Success a

�: fromJSON (Bool True) :: Result Bool
Success True

�: fromJSON (Bool True) :: Result Double
Error "when expecting a Double, encountered Boolean instead"

As of 7.10.2 we can use the new -XDeriveAnyClass to automatically derive instances of FromJSON
and ToJSON without the need for standalone instance declarations. These are implemented entirely in
terms of the default methods which use Generics under the hood.

365 DATA FORMATS

{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}

import Data.Aeson
import Data.ByteString.Lazy.Char8 as BL
import Data.Text
import GHC.Generics

data Refs
= Refs

{ a :: Text,
b :: Text

}
deriving (Show, Generic, FromJSON, ToJSON)

data Data
= Data

{ id :: Int,
name :: Text,
price :: Int,
tags :: [Text],
refs :: Refs

}
deriving (Show, Generic, FromJSON, ToJSON)

main :: IO ()
main = do
contents <- BL.readFile "example.json"
let Just dat = decode contents
print $ name dat
print $ a (refs dat)
BL.putStrLn $ encode dat

Hand Written Instances

While it’s useful to use generics to derive instances, sometimes you actually want more fine grained control
over serialization and de serialization. So we fall back on writing ToJSON and FromJSON instances
manually. Using FromJSON we can project into hashmap using the (.:) operator to extract keys. If the
key fails to exist the parser will abort with a key failure message. The ToJSON instances can never fail
and simply require us to pattern match on our custom datatype and generate an appropriate value.

The law that the FromJSON and ToJSON classes should maintain is that encode . decode and decode . encode
should map to the same object. Although in practice there many times when we break this rule and es-
pecially if the serialize or de serialize is one way.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}

import Data.Text
import Data.Aeson
import Data.Maybe

DATA FORMATS 366

import Data.Aeson.Types
import Control.Applicative
import qualified Data.ByteString.Lazy as BL

data Crew = Crew
{ name :: Text
, rank :: Rank
} deriving (Show)

data Rank
= Captain
| Ensign
| Lieutenant
deriving (Show)

-- Custom JSON Deserializer

instance FromJSON Crew where
parseJSON (Object o) = do

_name <- o .: "name"
_rank <- o .: "rank"
pure (Crew _name _rank)

instance FromJSON Rank where
parseJSON (String s) = case s of

"Captain" -> pure Captain
"Ensign" -> pure Ensign
"Lieutenant" -> pure Lieutenant
_ -> typeMismatch "Could not parse Rank" (String s)

parseJSON x = typeMismatch "Expected String" x

-- Custom JSON Serializer

instance ToJSON Crew where
toJSON (Crew name rank) = object [

"name" .= name
, "rank" .= rank
]

instance ToJSON Rank where
toJSON Captain = String "Captain"
toJSON Ensign = String "Ensign"
toJSON Lieutenant = String "Lieutenant"

roundTrips :: Crew -> Bool
roundTrips = isJust . go
where

go :: Crew -> Maybe Crew
go = decode . encode

picard :: Crew

367 DATA FORMATS

picard = Crew { name = "Jean-Luc Picard", rank = Captain }

main :: IO ()
main = do
contents <- BL.readFile "crew.json"
let (res :: Maybe Crew) = decode contents
print res
print $ roundTrips picard

See: Aeson Documentation

27.2 Yaml
Yaml is a textual serialization format similar to JSON. It uses an indentation sensitive structure to encode
nested maps of keys and values. The Yaml interface for Haskell is a precise copy of Data.Aeson

• Yaml Library

YAML Input:

invoice: 34843
date : 2001-01-23
bill:

given : Chris
family : Dumars
address:

lines: |
458 Walkman Dr.
Suite #292

city : Royal Oak
state : MI
postal : 48046

YAML Output:

Object
(fromList

[("invoice" , Number 34843.0)
, ("date" , String "2001-01-23")
, ("bill-to"

, Object
(fromList

[("address"
, Object

(fromList
[("state" , String "MI")
, ("lines" , String "458 Walkman Dr.\nSuite #292\n")
, ("city" , String "Royal Oak")

http://hackage.haskell.org/package/aeson
https://hackage.haskell.org/package/yaml

DATA FORMATS 368

, ("postal" , Number 48046.0)
])

)
, ("family" , String "Dumars")
, ("given" , String "Chris")
])

)
])

To parse this file we use the following datatypes and functions:

{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE ScopedTypeVariables #-}

import qualified Data.ByteString as BL
import Data.Text (Text)
import Data.Yaml
import GHC.Generics

data Invoice
= Invoice

{ invoice :: Int,
date :: Text,
bill :: Billing

}
deriving (Show, Generic, FromJSON)

data Billing
= Billing

{ address :: Address,
family :: Text,
given :: Text

}
deriving (Show, Generic, FromJSON)

data Address
= Address

{ lines :: Text,
city :: Text,
state :: Text,
postal :: Int

}
deriving (Show, Generic, FromJSON)

main :: IO ()
main = do
contents <- BL.readFile "example.yaml"
let (res :: Either ParseException Invoice) = decodeEither' contents
case res of

369 DATA FORMATS

Left err -> print err
Right val -> print val

Which generates:

Invoice
{ invoice = 34843
, date = "2001-01-23"
, bill =

Billing
{ address =

Address
{ lines = "458 Walkman Dr.\nSuite #292\n"
, city = "Royal Oak"
, state = "MI"
, postal = 48046
}

, family = "Dumars"
, given = "Chris"
}

}

27.3 CSV
Cassava is an efficient CSV parser library. We’ll work with this tiny snippet from the iris dataset:

• Cassava Library

sepal_length,sepal_width,petal_length,petal_width,plant_class
5.1,3.5,1.4,0.2,Iris-setosa
5.0,2.0,3.5,1.0,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica

Unstructured CSV

Just like with Aeson if we really want to work with unstructured data the library accommodates this.

import Data.Csv

import Text.Show.Pretty

import qualified Data.Vector as V
import qualified Data.ByteString.Lazy as BL

type ErrorMsg = String

https://hackage.haskell.org/package/cassava

DATA FORMATS 370

type CsvData = V.Vector (V.Vector BL.ByteString)

example :: FilePath -> IO (Either ErrorMsg CsvData)
example fname = do
contents <- BL.readFile fname
return $ decode NoHeader contents

We see we get the nested set of stringy vectors:

[["sepal_length"
, "sepal_width"
, "petal_length"
, "petal_width"
, "plant_class"
]

, ["5.1" , "3.5" , "1.4" , "0.2" , "Iris-setosa"]
, ["5.0" , "2.0" , "3.5" , "1.0" , "Iris-versicolor"]
, ["6.3" , "3.3" , "6.0" , "2.5" , "Iris-virginica"]
]

Structured CSV

Just like with Aeson we can use Generic to automatically write the deserializer between our CSV data
and our custom datatype.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveGeneric #-}

import Data.Csv
import GHC.Generics
import qualified Data.Vector as V
import qualified Data.ByteString.Lazy as BL

data Plant = Plant
{ sepal_length :: Double
, sepal_width :: Double
, petal_length :: Double
, petal_width :: Double
, plant_class :: String
} deriving (Generic, Show)

instance FromNamedRecord Plant
instance ToNamedRecord Plant

type ErrorMsg = String
type CsvData = (Header, V.Vector Plant)

parseCSV :: FilePath -> IO (Either ErrorMsg CsvData)

371 DATA FORMATS

parseCSV fname = do
contents <- BL.readFile fname
return $ decodeByName contents

main = parseCSV "iris.csv" >>= print

And again we get a nice typed ADT as a result.

[Plant
{ sepal_length = 5.1
, sepal_width = 3.5
, petal_length = 1.4
, petal_width = 0.2
, plant_class = "Iris-setosa"
}

, Plant
{ sepal_length = 5.0
, sepal_width = 2.0
, petal_length = 3.5
, petal_width = 1.0
, plant_class = "Iris-versicolor"
}

, Plant
{ sepal_length = 6.3
, sepal_width = 3.3
, petal_length = 6.0
, petal_width = 2.5
, plant_class = "Iris-virginica"
}

]

DATA FORMATS 372

Chapter 28

Network & Web Programming

There is a common meme that it is impossible to build web CRUD applications in Haskell. This abso-
lutely false and the ecosystem provides a wide variety of tools and frameworks for building modern web
services. That said, although Haskell has web frameworks the userbase of these libraries is several orders
of magnitude less than common tools like PHP and Wordpress and as such are not close to the level of
polish, documentation, or userbase. Put simply you won’t be able to drunkenly muddle your way through
building a Haskell web application by copying and pasting code from Stackoverflow.

Building web applications in Haskell is always a balance between the power and flexibility of the
type-driven way of building software versus the network effects of ecosystems based on dynamically typed
languages with lower barriers to entry.

Web packages can mostly be broken down into several categories:

• Web servers - Services that handle the TCP level of content delivery and protocol servicing.
• Request libraries - Libraries for issuing HTTP requests to other servers.
• Templating Libraries - Libraries to generate HTML from interpolating strings.
• HTML Generation - Libraries to generate HTML from Haskell datatypes.
• Form Handling & Validation - Libraries for handling form input and serialisation and validating

data against a given schema and constraint sets.
• Web Frameworks - Frameworks for constructing RESTful services and handling the lifecycle of

HTTP requests within a business logic framework.
• Database Mapping - ORM and database libraries to work with database models and serialise data

to web services. See Databases.

28.1 Frameworks
There are three large Haskell web frameworks:

IHP
IHP, by digitallyInduced, is a new batteries-included web framework optimized for longterm produc-

tivity and programmer happiness. The framework manages installation of ide, db, and haskell for you,
as result of trying to be as beginner friendly as possible with all batteries included, while while having a
bunch of novel features. The framework has its own documentation.

Servant
Servant is the newest of the standard Haskell web frameworks. It emerged after GHC 8.0 and incor-

porates many modern language extensions. It is based around the key idea of having a type-safe routing
system in which many aspects of the request/response cycle of the server are expressed at the type-level.
This allows many common errors found in web applications to be prevented. Servant also has very ad-
vanced documentation generation capability and can automatically generate API endpoint documentation
from the type signatures of an application. Servant has a reputation for being a bit more challenging to
learn but is quite powerful and has an wide user-base in the industrial Haskell community.

See: Servant

373

NETWORK & WEB PROGRAMMING 374

Scotty
Scotty is a minimal web framework that builds on top of the Warp web server. It is based on a simple

routing model and that makes standing up simple REST API services quite simple. Its design is modeled
after the Flask and Sinatra models found in Python and Ruby.

See: Scotty
Yesod
Yesod is a large featureful ecosystem built on lots of metaprogramming using Template Haskell. There

is excellent documentation and a book on building real world applications. This style of metaprogramming
appeals to some types of programmers who can work with the code generation style.

Snap
Snap is a small Haskell web framework which was developed heavily in the early 2000s. It is based on a

very well-tested core and has a modular framework in which “snaplets” can extend the base server. Much
of the Haskell.org infrastructure of packages and development runs on top of Snap web applications.

28.2 HTTP Requests
Haskell has a variety of HTTP request and processing libraries. The simplest and most flexible is the
HTTP library.

{-# LANGUAGE OverloadedStrings #-}

import Control.Applicative
import Control.Concurrent.Async
import Network.HTTP.Client
import Network.HTTP.Types

type URL = String

get :: Manager -> URL -> IO Int
get m url = do
req <- parseUrlThrow url
statusCode . responseStatus <$> httpNoBody req m

single :: IO Int
single = do
manager <- newManager defaultManagerSettings
get manager "http://haskell.org"

parallel :: IO [Int]
parallel = do

manager <- newManager defaultManagerSettings
-- Fetch w3.org 10 times concurrently
let urls = replicate 10 "http://www.w3.org"
mapConcurrently (get manager) urls

main :: IO ()
main = do
print =<< single
print =<< parallel

https://hackage.haskell.org/package/HTTP

375 NETWORK & WEB PROGRAMMING

28.3 Req
Req is a modern HTTP request library that provides a simple monad for executing batches of HTTP
requests to servers. It integrates closely with the Aeson library for JSON handling and exposes a type
safe API to prevent the mixing of invalid requests and payload types.

The two toplevel functions of note are req and runReq which run inside of a Req monad which holds
the socket state.

runReq :: MonadIO m => HttpConfig -> Req a -> m a
req
:: (MonadHttp m

, HttpMethod method
, HttpBody body
, HttpResponse response
, HttpBodyAllowed (AllowsBody method) (ProvidesBody body))

=> method -- ^ HTTP method
-> Url scheme -- ^ 'Url'—location of resource
-> body -- ^ Body of the request
-> Proxy response -- ^ A hint how to interpret response
-> Option scheme -- ^ Collection of optional parameters
-> m response -- ^ Response

A end to end example can include serialising and de serialising requests to and from JSON from
RESTful services.

{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}

import Control.Monad.Trans
import Data.Aeson
import GHC.Generics
import Network.HTTP.Req

data Point = Point {x :: Int, y :: Int}
deriving (Generic, ToJSON, FromJSON)

example :: IO ()
example = runReq defaultHttpConfig $ do

-- GET request http response
r <- req GET (https "w3.org") NoReqBody bsResponse mempty
liftIO $ print (responseBody r)
-- GET request json response
r <- req GET (https "api.github.com" /: "users" /: "sdiehl") NoReqBody jsonResponse mempty
liftIO $ print (responseBody r :: Value)
-- POST request json payload
r <- req POST (https "example.com") (ReqBodyJson (Point 1 2)) jsonResponse mempty
liftIO $ print (responseBody r :: Value)

NETWORK & WEB PROGRAMMING 376

28.4 Blaze
Blaze is an HTML combinator library that provides that capacity to build composable bits of HTML
programmatically. It doesn’t string templating libraries like Hastache but instead provides an API for
building up HTML documents from logic where the format out of the output is generated procedurally.

For sequencing HTML elements the elements can either be sequenced in a monad or with monoid
operations.

{-# LANGUAGE OverloadedStrings #-}

module Html where

import Text.Blaze.Html5
import Text.Blaze.Html.Renderer.Text

import qualified Data.Text.Lazy.IO as T

example :: Html
example = do
h1 "First header"
p $ ul $ mconcat [li "First", li "Second"]

main :: IO ()
main = do
T.putStrLn $ renderHtml example

For custom datatypes we can implement the ToMarkup class to convert between Haskell data structures
and HTML representation.

{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE OverloadedStrings #-}

module Html where

import Text.Blaze.Html5
import Text.Blaze.Html.Renderer.Text

import qualified Data.Text.Lazy as T
import qualified Data.Text.Lazy.IO as T

data Employee = Employee
{ name :: T.Text
, age :: Int
}

instance ToMarkup Employee where
toMarkup Employee {..} = ul $ mconcat

[li (toHtml name)
, li (toHtml age)
]

377 NETWORK & WEB PROGRAMMING

fred :: Employee
fred = Employee { name = "Fred", age = 35 }

main :: IO ()
main = do
T.putStrLn $ renderHtml (toHtml fred)

28.5 Lucid
Lucid is another HTML generation library. It takes a different namespacing approach than Blaze and
doesn’t use names which clash with the default Prelude exports. So elements like div , id , and head are
replaced with underscore suffixed functions. div_ , id_ and head_ .

The base interface is defined through a ToHTML typeclass which renders an element into a text builder
interface wrapped in HtmlT transformer.

class ToHtml a where
toHtml :: Monad m => a -> HtmlT m ()
toHtmlRaw :: Monad m => a -> HtmlT m ()

execHtmlT :: Monad m => HtmlT m a -> m Builder
renderText :: Html a -> Text
renderBS :: Html a -> ByteString

New elements and attributes can be created by the smart constructors for Attribute and Element
types.

makeAttribute
:: Text -- ^ Attribute name.
-> Text -- ^ Attribute value.
-> Attribute

makeElement
:: Functor m
=> Text -- ^ Name.
-> HtmlT m a -- ^ Children HTML.
-> HtmlT m a -- ^ A parent element.

A simple example of usage is shown below:

{-# LANGUAGE BlockArguments #-}
{-# LANGUAGE OverloadedStrings #-}

module Main where

NETWORK & WEB PROGRAMMING 378

import Lucid
import Lucid.Base
import Lucid.Html5

example1 :: Html ()
example1 = table_ (tr_ (td_ (p_ "My table.")))

example2 :: Html ()
example2 = html_ do
head_ do

title_ "HTML from Haskell"
link_ [rel_ "stylesheet", type_ "text/css", href_ "bootstrap.css"]

body_ do
p_ "Generating HTMl form Haskell datatypes:"
ul_ $ mapM_ (li_ . toHtml . show) [1 .. 100]

main :: IO ()
main = do
print (renderText example1)
print (renderBS example2)

28.6 Hastache
Hastache is string templating based on the “Mustache” style of encoding metavariables with double braces
{{ x }} . Hastache supports automatically converting many Haskell types into strings and uses the efficient

Text functions for formatting.
The variables loaded into the template are specified in either a function mapping variable names to

printable MuType values. For instance using a function.

{-# LANGUAGE OverloadedStrings #-}

import Text.Hastache
import Text.Hastache.Context

import qualified Data.Text as T
import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.IO as TL

import Data.Data

template :: FilePath -> MuContext IO -> IO TL.Text
template = hastacheFile defaultConfig

-- Function strContext
context :: String -> MuType IO
context "body" = MuVariable ("Hello World" :: TL.Text)
context "title" = MuVariable ("Haskell is lovely" :: TL.Text)
context _ = MuVariable ()

main :: IO ()

379 NETWORK & WEB PROGRAMMING

main = do
output <- template "templates/home.html" (mkStrContext context)
TL.putStrLn output

Or using Data-Typeable record and mkGenericContext , the Haskell field names are converted into vari-
able names.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveDataTypeable #-}

import Text.Hastache
import Text.Hastache.Context

import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.IO as TL

import Data.Data

template :: FilePath -> MuContext IO -> IO TL.Text
template = hastacheFile defaultConfig

-- Record context
data TemplateCtx = TemplateCtx
{ body :: TL.Text
, title :: TL.Text
} deriving (Data, Typeable)

main :: IO ()
main = do
let ctx = TemplateCtx { body = "Hello", title = "Haskell" }
output <- template "templates/home.html" (mkGenericContext ctx)
TL.putStrLn output

The MuType and MuContext types can be parameterized by any monad or transformer that imple-
ments MonadIO , not just IO.

28.7 Warp
Warp is a efficient massively concurrent web server, it is the backend server behind several of popular
Haskell web frameworks. The internals have been finely tuned to utilize Haskell’s concurrent runtime and
is capable of handling a great deal of concurrent requests. For example we can construct a simple web
service which simply returns a 200 status code with a ByteString which is flushed to the socket.

{-# LANGUAGE OverloadedStrings #-}

import Network.HTTP.Types
import Network.Wai
import Network.Wai.Handler.Warp (run)

NETWORK & WEB PROGRAMMING 380

app :: Application
app req respond = respond $ responseLBS status200 [] "Make it so."

main :: IO ()
main = run 8000 app

See: Warp

28.8 Scotty
Continuing with our trek through web libraries, Scotty is a web microframework similar in principle to
Flask in Python or Sinatra in Ruby.

{-# LANGUAGE OverloadedStrings #-}

import Web.Scotty

import qualified Text.Blaze.Html5 as H
import Text.Blaze.Html5 (toHtml, Html)
import Text.Blaze.Html.Renderer.Text (renderHtml)

greet :: String -> Html
greet user = H.html $ do
H.head $

H.title "Welcome!"
H.body $ do

H.h1 "Greetings!"
H.p ("Hello " >> toHtml user >> "!")

app = do
get "/" $

text "Home Page"

get "/greet/:name" $ do
name <- param "name"
html $ renderHtml (greet name)

main :: IO ()
main = scotty 8000 app

Of importance to note is the Blaze library used here overloads do-notation but is not itself a proper
monad so the various laws and invariants that normally apply for monads may break down or fail with
error terms.

A collection of useful related resources can be found on the Scotty wiki: Scotty Tutorials & Examples

28.9 Servant
Servant is a modern Haskell web framework heavily based on type-level programming patterns. Servant’s
novel invention is a type-safe way of specifying URL routes. This consists of two type-level infix combina-

http://aosabook.org/en/posa/warp.html
https://github.com/scotty-web/scotty/wiki

381 NETWORK & WEB PROGRAMMING

tors :> and :<|> combinators which combine URL fragments into routes that are run by the web server.
The two datatypes are defined as followings:

data (path :: k) :> (a :: *)
data a :<|> b

For example the URL endpoint for a GET route that returns JSON.

Endpoint Servant route
GET /api/hello "api" :> "hello" :> Get ‘[JSON] String

The HTTP methods are lifted to the type level as DataKinds from the following definition.

data StdMethod = GET | POST | HEAD | PUT | DELETE | TRACE | CONNECT | OPTIONS | PATCH

And the common type synonyms are given for successful requests:

type Post = Verb POST 200
type Get = Verb GET 200

For requests that receive a payload from the client a ReqBody is attached to the route which contains
the content type of the requested payload. This takes a type-level list of options and the Haskell value
type to serialize into.

data ReqBody' (mods :: [*]) (contentTypes :: [*]) (a :: *)

Endpoint Servant route
POST /api/hello "api" :> "hello" :> ReqBody '[JSON] MyData :> Post '[JSON] MyData

The application itself is expressed simply as a function which takes a Request containing the headers
and payload and handles it by evaluating to a Response inside of the IO. The underlying server used in
servant-server is Warp.

type Application
= Request
-> (Response -> IO ResponseReceived)
-> IO ResponseReceived

Middleware is then simply a higher order function which takes an Application to another Application .

NETWORK & WEB PROGRAMMING 382

type Middleware = Application -> Application

Handlers are specified defined in servant-server and are IO computations with failures handed by
ServerError . The toplevel functions run and serve can be used to instantiate the application inside of

a server.

newtype Handler a = Handler { runHandler' :: ExceptT ServerError IO a }
serve :: HasServer api '[] => Proxy api -> Server api -> Application
run :: Port -> Application -> IO ()

For error handling the throwError function can be used attached to an error response code.

fail404 :: Handler ()
fail404 = throwError $ err404 { errBody = "Not found" }

Minimal Example
The simplest end to end example is simply a router which has a single endpoint mapping to a server

handler which returns the String “Hello World” as a application/json content type.

type AppAPI = "api" :> "hello" :> Get ‘[JSON] String

appAPI :: Proxy AppAPI
appAPI = Proxy :: Proxy AppAPI

helloHandler :: Handler String
helloHandler = return "Hello World!"

apiHandler :: Server AppAPI
apiHandler = helloHandler

runServer :: IO ()
runServer = do
let port = 8000
run port (serve appAPI apiHandler)

Full Example
As a second case, we consider a larger application which builds a user interface which will enable the

interface to send and receive data from the client to the REST API.
First we define a custom User datatype and using generic deriving we can derive the serializer from

URI form data automatically.

data User = User {name :: Text, userId :: Int}
deriving stock (Generic, Show)
deriving anyclass (FromForm, FromHttpApiData)

383 NETWORK & WEB PROGRAMMING

The URL routes are specified in an API type which maps the REST verbs to response handlers.

type API =
Get '[HTML] Markup
:<|> ("user" :> ReqBody '[FormUrlEncoded] User :> Post '[HTML] Markup)

The handler is an inhabitant of the API type and defines the value level handlers corresponding to the
routes at the type-level :<|> terms.

server :: Handler Markup :<|> (User -> Handler Markup)
server = index :<|> createUser

The page rendering itself is mostly blaze boilerplate that generates the markup programmatically using
combinators. One could just as easily plug in any of the templating languages (Mustache, …) instead here.

index :: Handler Markup
index = do
pure (page userForm)

userForm :: Html.Html
userForm =
Html.div ! Attr.class_ "row" $ do
form "/user" "post" $ do

field "name"
field "userId"
submit "Create user"

The page will include the html and header containing the source files. In this case we’ll simply load
the Bootstrap library from a CDN.

page :: Markup -> Markup
page body = do
Html.html do
Html.head do

Html.title "Example App"
Html.link
! Attr.rel "stylesheet"
! Attr.href "https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"

Html.body do
... other body markup ...

And then the handler for POST for the single endpoint will simply deserialize the User datatype form
the POST data and render it into a page with the fields extracted.

NETWORK & WEB PROGRAMMING 384

createUser :: User -> Handler Markup
createUser user@User {..} = do
liftIO (print user)
pure $ page $ do

Html.p ("Id: " <> toHtml userId)
Html.p ("Username: " <> toHtml name)

Putting it all together we can invoke run on a given port and serve the application. Point your browser
at localhost:8000 to see it run.

main :: IO ()
main = do
putStrLn "Running Server"
let application = Server.serve @API Proxy server
Warp.run 8000 application

From here you could all manner of additional logic, like adding in the Selda object relational mapper,
adding in servant-auth for authentication or using swagger2 for building Open API specifications.

Chapter 29

Databases

Haskell has bindings for most major databases and persistence engines. Generally the libraries will consist
of two different layers. The raw bindings which wrap the C library or wire protocol will usually be
called -simple . So for example postgresql-simple is the Haskell library for interfacing with the C library
libpq-dev . Higher level libraries will depend on this library for the bindings and provide higher level

interfaces for building queries, managing transactions, and connection pooling.

29.1 Postgres
Postgres is an object-relational database management system with a rich extension of the SQL standard.
Consider the following tables specified in DDL.

CREATE TABLE "books" (
"id" integer NOT NULL,
"title" text NOT NULL,
"author_id" integer,
"subject_id" integer,
Constraint "books_id_pkey" Primary Key ("id")

);

CREATE TABLE "authors" (
"id" integer NOT NULL,
"last_name" text,
"first_name" text,
Constraint "authors_pkey" Primary Key ("id")

);

The postgresql-simple bindings provide a thin wrapper to various libpq commands to interact with a
Postgres server. These functions all take a Connection object to the database instance and allow various
bytestring queries to be sent and result sets mapped into Haskell datatypes. There are four primary
functions for these interactions:

query_ :: FromRow r => Connection -> Query -> IO [r]
query :: (ToRow q, FromRow r) => Connection -> Query -> q -> IO [r]
execute :: ToRow q => Connection -> Query -> q -> IO Int64
execute_ :: Connection -> Query -> IO Int64

385

DATABASES 386

The result of the query function is a list of elements which implement the FromRow typeclass. This
can be many things including a single element (Only), a list of tuples where each element implements
FromField or a custom datatype that itself implements FromRow . Under the hood the database bindings

inspects the Postgres oid objects and then attempts to convert them into the Haskell datatype of the
field being scrutinised. This can fail at runtime if the types in the database don’t align with the expected
types in the logic executing the SQL query.

Tuples

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}

import qualified Data.Text as T
import qualified Database.PostgreSQL.Simple as SQL

creds :: SQL.ConnectInfo
creds =
SQL.defaultConnectInfo

{ SQL.connectUser = "example",
SQL.connectPassword = "example",
SQL.connectDatabase = "booktown"

}

selectBooks :: SQL.Connection -> IO [(Int, T.Text, Int)]
selectBooks conn = SQL.query_ conn "select id, title, author_id from books"

main :: IO ()
main = do
conn <- SQL.connect creds
books <- selectBooks conn
print books

This yields the result set:

[(7808 , "The Shining" , 4156)
, (4513 , "Dune" , 1866)
, (4267 , "2001: A Space Odyssey" , 2001)
, (1608 , "The Cat in the Hat" , 1809)
, (1590 , "Bartholomew and the Oobleck" , 1809)
, (25908 , "Franklin in the Dark" , 15990)
, (1501 , "Goodnight Moon" , 2031)
, (190 , "Little Women" , 16)
, (1234 , "The Velveteen Rabbit" , 25041)
, (2038 , "Dynamic Anatomy" , 1644)
, (156 , "The Tell-Tale Heart" , 115)
, (41473 , "Programming Python" , 7805)
, (41477 , "Learning Python" , 7805)
, (41478 , "Perl Cookbook" , 7806)
, (41472 , "Practical PostgreSQL" , 1212)
]

387 DATABASES

Custom Types

{-# LANGUAGE OverloadedStrings #-}

import qualified Data.Text as T

import qualified Database.PostgreSQL.Simple as SQL
import Database.PostgreSQL.Simple.FromRow (FromRow(..), field)

data Book = Book
{ id_ :: Int
, title :: T.Text
, author_id :: Int
} deriving (Show)

instance FromRow Book where
fromRow = Book <$> field <*> field <*> field

creds :: SQL.ConnectInfo
creds = SQL.defaultConnectInfo
{ SQL.connectUser = "example"
, SQL.connectPassword = "example"
, SQL.connectDatabase = "booktown"
}

selectBooks :: SQL.Connection -> IO [Book]
selectBooks conn = SQL.query_ conn "select id, title, author_id from books limit 4"

main :: IO ()
main = do
conn <- SQL.connect creds
books <- selectBooks conn
print books

This yields the result set:

[Book { id_ = 7808 , title = "The Shining" , author_id = 4156 }
, Book { id_ = 4513 , title = "Dune" , author_id = 1866 }
, Book { id_ = 4267 , title = "2001: A Space Odyssey" , author_id = 2001 }
, Book { id_ = 1608 , title = "The Cat in the Hat" , author_id = 1809 }
]

Quasiquoter

As SQL expressions grow in complexity they often span multiple lines and sometimes it’s useful to just
drop down to a quasiquoter to embed the whole query. The quoter here is pure, and just generates the
Query object behind as a ByteString.

DATABASES 388

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}

import qualified Data.Text as T

import qualified Database.PostgreSQL.Simple as SQL
import Database.PostgreSQL.Simple.SqlQQ (sql)
import Database.PostgreSQL.Simple.FromRow (FromRow(..), field)

data Book = Book
{ id_ :: Int
, title :: T.Text
, first_name :: T.Text
, last_name :: T.Text
} deriving (Show)

instance FromRow Book where
fromRow = Book <$> field <*> field <*> field <*> field

creds :: SQL.ConnectInfo
creds = SQL.defaultConnectInfo
{ SQL.connectUser = "example"
, SQL.connectPassword = "example"
, SQL.connectDatabase = "booktown"
}

selectBooks :: SQL.Query
selectBooks = [sql|
select
books.id,
books.title,
authors.first_name,
authors.last_name

from books
join authors on
authors.id = books.author_id

limit 5
|]

main :: IO ()
main = do
conn <- SQL.connect creds
(books :: [Book]) <- SQL.query_ conn selectBooks
print books

This yields the result set:

[Book
{ id_ = 41472

389 DATABASES

, title = "Practical PostgreSQL"
, first_name = "John"
, last_name = "Worsley"
}

, Book
{ id_ = 25908
, title = "Franklin in the Dark"
, first_name = "Paulette"
, last_name = "Bourgeois"
}

, Book
{ id_ = 1234
, title = "The Velveteen Rabbit"
, first_name = "Margery Williams"
, last_name = "Bianco"
}

, Book
{ id_ = 190
, title = "Little Women"
, first_name = "Louisa May"
, last_name = "Alcott"
}

]

29.2 Sqlite
The sqlite-simple library provides a binding to the libsqlite3 which can interact with and query SQLite
databases. It provides precisely the same interface as the Postgres library of similar namesakes.

query_ :: FromRow r => Connection -> Query -> IO [r]
query :: (ToRow q, FromRow r) => Connection -> Query -> q -> IO [r]
execute :: ToRow q => Connection -> Query -> q -> IO Int64
execute_ :: Connection -> Query -> IO Int64

All datatypes can be serialised to and from result sets by defining FromRow and ToRow datatypes which
map your custom datatypes to a RowParser which convets result sets, or a serialisers which maps custom
to one of the following primitive sqlite types.

• SQLInteger

• SQLFloat
• SQLText
• SQLBlob
• SQLNull

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}

DATABASES 390

import Data.Text as T
import Database.SQLite.Simple as SQL

selectBooks :: SQL.Connection -> IO [(Int, T.Text, Int)]
selectBooks conn = SQL.query_ conn "select id, title, author_id from books"

main :: IO ()
main = do
conn <- open "books.db"
books <- selectBooks conn
pure ()

For examples of serialising to datatype see the previous Postgres section as it has an identical interface.

29.3 Redis
Redis is an in-memory key-value store with support for a variety of datastructures. The Haskell exposure
is exposed in a Redis monad which sequences a set of redis commands taking ByteString arguments and
then executes them against a connection object.

{-# LANGUAGE OverloadedStrings #-}

import Database.Redis
import Data.ByteString.Char8

session :: Redis (Either Reply (Maybe ByteString))
session = do

set "hello" "haskell"
get "hello"

main :: IO ()
main = do
conn <- connect defaultConnectInfo
res <- runRedis conn session
print res

Redis is quite often used as a lightweight pubsub server, and the bindings integrate with the Haskell
concurrency primitives so that listeners can be sparked and shared across threads off without blocking the
main thread.

{-# LANGUAGE OverloadedStrings #-}

import Database.Redis

import Control.Monad
import Control.Monad.Trans
import Data.ByteString.Char8

http://redis.io/commands

391 DATABASES

import Control.Concurrent

subscriber :: Redis ()
subscriber =
pubSub (subscribe ["news"]) $ \msg -> do

print msg
return mempty

publisher :: Redis ()
publisher = forM_ [1..100] $ \n -> publish "news" (pack (show n))

-- connects to localhost:6379
main :: IO ()
main = do
conn1 <- connect defaultConnectInfo
conn2 <- connect defaultConnectInfo

-- Fork off a publisher
forkIO $ runRedis conn1 publisher

-- Subscribe for messages
runRedis conn2 subscriber

29.4 Acid State
Acid-state allows us to build a “database” for around our existing Haskell datatypes that guarantees
atomic transactions. For example, we can build a simple key-value store wrapped around the Map type.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE DeriveDataTypeable #-}

import Data.Acid
import Data.Typeable
import Data.SafeCopy
import Control.Monad.Reader (ask)

import qualified Data.Map as Map
import qualified Control.Monad.State as S

type Key = String
type Value = String

data Database = Database !(Map.Map Key Value)
deriving (Show, Ord, Eq, Typeable)

$(deriveSafeCopy 0 'base ''Database)

insertKey :: Key -> Value -> Update Database ()
insertKey key value

DATABASES 392

= do Database m <- S.get
S.put (Database (Map.insert key value m))

lookupKey :: Key -> Query Database (Maybe Value)
lookupKey key

= do Database m <- ask
return (Map.lookup key m)

deleteKey :: Key -> Update Database ()
deleteKey key

= do Database m <- S.get
S.put (Database (Map.delete key m))

allKeys :: Int -> Query Database [(Key, Value)]
allKeys limit

= do Database m <- ask
return $ take limit (Map.toList m)

$(makeAcidic ''Database ['insertKey, 'lookupKey, 'allKeys, 'deleteKey])

fixtures :: Map.Map String String
fixtures = Map.empty

test :: Key -> Value -> IO ()
test key val = do

database <- openLocalStateFrom "db/" (Database fixtures)
result <- update database (InsertKey key val)
result <- query database (AllKeys 10)
print result

29.5 Selda
Selda is a object relation mapper and database abstraction which provides a higher level interface for
creating database schemas for multiple database backends, as well as a type-safe query interface which
makes use of advanced type system features to ensure integrity of queries.

Selda is very unique in that it uses the OverloadedLabels extension to query refer to database fields
that map directly to fields of records. By deriving Generic and instantiating SqlRow via DeriveAnyClass
we can create databases schemas automatically with generic deriving.

data Employee = Employee
{ id :: ID Employee
, name :: Text
, title :: Text
, companyId :: ID Company
}
deriving (Generic, SqlRow)

data Company = Company
{ id :: ID Company
, name :: Text

393 DATABASES

}
deriving (Generic, SqlRow)

instance SqlRow Employee
instance SqlRow Company

The tables themselves can be named, annotated with metadata about constraints and foreign keys and
assigned to a Haskell value.

employees :: Table Employee
employees = table "employees" [#id :- autoPrimary, #companyId :- foreignKey companies #id]

companies :: Table Company
companies = table "companies" [#id :- autoPrimary]

This table can then be generated and populated.

main :: IO ()
main = withSQLite "company.sqlite" $ do
createTable employees
createTable companies
-- Populate companies
insert_
companies
[Company (toId 0) "Dunder Mifflin Inc."]

-- Populate employees
insert_
employees
[Employee (toId 0) "Michael Scott" "Director" (toId 0),

Employee (toId 1) "Dwight Schrute" "Regional Manager" (toId 0)
]

This will generate the following Sqlite DDL to instantiate the tables directly from the types of the
Haskell data strutures.

CREATE TABLEIF NOT EXISTS "companies"
(

"id" integer PRIMARY KEY autoincrement NOT NULL,
"name" text NOT NULL

);

CREATE TABLEIF NOT EXISTS "employees"
(

"id" integer PRIMARY KEY autoincrement NOT NULL,
"name" text NOT NULL,
"title" text NOT NULL,

DATABASES 394

"companyId" integer NOT NULL,
CONSTRAINT "fk0_companyId" FOREIGN KEY ("companyId") REFERENCES "companies"("id")

);

Selda also provides an embedded query language for specifying type-safe queries by allowing you to
add the overloaded labels to work with these values directly as SQL selectors.

select :: Relational a => Table a -> Query s (Row s a)
insert :: (MonadSelda m, Relational a) => Table a -> [a] -> m Int
query :: (MonadSelda m, Result a) => Query (Backend m) a -> m [Res a]
from :: (Typeable t, SqlType a) => Selector t a -> Query s (Row s t) -> Query s (Col s a)

restrict :: Same s t => Col s Bool -> Query t ()
order :: (Same s t, SqlType a) => Col s a -> Order -> Query t ()

An example SELECT SQL query:

exampleSelect :: IO ([Employee], [Company])
exampleSelect = withSQLite "company.sqlite" $

query $ do
employee <- select employees
restrict (employee ! #id .>= 1)

Chapter 30

GHC

30.1 Compiler Design
The flow of code through GHC is a process of translation between several intermediate languages and
optimizations and transformations thereof. A common pattern for many of these AST types is they are
parametrized over a binder type and at various stages the binders will be transformed, for example the
Renamer pass effectively translates the HsSyn datatype from a AST parametrized over literal strings as
the user enters into a HsSyn parameterized over qualified names that includes modules and package names
into a higher level Name type.

GHC Compiler Passes

• Parser/Frontend: An enormous AST translated from human syntax that makes explicit all possi-
ble expressible syntax (declarations, do-notation, where clauses, syntax extensions, template haskell,
…). This is unfiltered Haskell and it is enormous.

• Renamer takes syntax from the frontend and transforms all names to be qualified (base:Prelude.map
instead of map) and any shadowed names in lambda binders transformed into unique names.

• Typechecker is a large pass that serves two purposes, first is the core type bidirectional inference
engine where most of the work happens and the translation between the frontend Core syntax.

• Desugarer translates several higher level syntactic constructors

– where statements are turned into (possibly recursive) nested let statements.
– Nested pattern matches are expanded out into splitting trees of case statements.
– do-notation is expanded into explicit bind statements.
– Lots of others.

• Simplifier transforms many Core constructs into forms that are more adaptable to compilation.
For example let statements will be floated or raised, pattern matches will simplified, inner loops will
be pulled out and transformed into more optimal forms. Non-intuitively the resulting may actually
be much more complex (for humans) after going through the simplifier!

• Stg pass translates the resulting Core into STG (Spineless Tagless G-Machine) which effectively
makes all laziness explicit and encodes the thunks and update frames that will be handled during
evaluation.

• Codegen/Cmm pass will then translate STG into Cmm a simple imperative language that man-
ifests the low-level implementation details of runtime types. The runtime closure types and stack
frames are made explicit and low-level information about the data and code (arity, updatability,
free variables, pointer layout) made manifest in the info tables present on most constructs.

• Native Code The final pass will than translate the resulting code into either LLVM or Assembly
via either through GHC’s home built native code generator (NCG) or the LLVM backend.

Information for each pass can be dumped out via a rather large collection of flags. The GHC internals
are very accessible although some passes are somewhat easier to understand than others. Most of the time

395

GHC 396

-ddump-simpl and -ddump-stg are sufficient to get an understanding of how the code will compile, unless
of course you’re dealing with very specialized optimizations or hacking on GHC itself.

Flag Action
-ddump-parsed Frontend AST.
-ddump-rn Output of the rename pass.
-ddump-tc Output of the typechecker.
-ddump-splices Output of TemplateHaskell splices.
-ddump-types Typed AST representation.
-ddump-deriv Output of deriving instances.
-ddump-ds Output of the desugar pass.
-ddump-spec Output of specialisation pass.
-ddump-rules Output of applying rewrite rules.
-ddump-vect Output results of vectorize pass.
-ddump-simpl Output of the SimplCore pass.
-ddump-inlinings Output of the inliner.
-ddump-cse Output of the common subexpression elimination pass.
-ddump-prep The CorePrep pass.
-ddump-stg The resulting STG.
-ddump-cmm The resulting Cmm.
-ddump-opt-cmm The resulting Cmm optimization pass.
-ddump-asm The final assembly generated.
-ddump-llvm The final LLVM IR generated.

30.2 GHC API
GHC can be used as a library to manipulate and transform Haskell source code into executable code. It
consists of many functions, the primary drivers in the pipeline are outlined below.

-- Parse a module.
parseModule :: GhcMonad m => ModSummary -> m ParsedModule

-- Typecheck and rename a parsed module.
typecheckModule :: GhcMonad m => ParsedModule -> m TypecheckedModule

-- Desugar a typechecked module.
desugarModule :: GhcMonad m => TypecheckedModule -> m DesugaredModule

-- Generated ModIface and Generated Code
loadModule :: (TypecheckedMod mod, GhcMonad m) => mod -> m mod

The output of these functions consists of four main data structures:

• ParsedModule
• TypecheckedModule
• DesugaredModule
• CoreModule

GHC itself can be used as a library just as any other library. The example below compiles a simple
source module “B” that contains no code.

397 GHC

import GHC
import GHC.Paths (libdir)
import DynFlags

targetFile :: FilePath
targetFile = "B.hs"

example :: IO ()
example =
defaultErrorHandler defaultFatalMessager defaultFlushOut $ do
runGhc (Just libdir) $ do

dflags <- getSessionDynFlags
setSessionDynFlags dflags

target <- guessTarget targetFile Nothing
setTargets [target]
load LoadAllTargets
modSum <- getModSummary $ mkModuleName "B"

p <- parseModule modSum -- ModuleSummary
t <- typecheckModule p -- TypecheckedSource
d <- desugarModule t -- DesugaredModule
l <- loadModule d
let c = coreModule d -- CoreModule
g <- getModuleGraph
mapM showModule g
return c

main :: IO ()
main = do

res <- example
putStrLn $ showSDoc (ppr res)

30.3 DynFlags
The internal compiler state of GHC is largely driven from a set of many configuration flags known as
DynFlags. These flags are largely divided into four categories:

• Dump Flags
• Warning Flags
• Extension Flags
• General Flags

These are flags are set via the following modifier functions:

dopt_set :: DynFlags -> DumpFlag -> DynFlags
wopt_set :: DynFlags -> WarningFlag -> DynFlags
xopt_set :: DynFlags -> Extension -> DynFlags
gopt_set :: DynFlags -> GeneralFlag -> DynFlags

GHC 398

See:

• DynFlags

30.4 Package Databases
A package is a library of Haskell modules known to the compiler. Compilation of a Haskell module through
Cabal uses a directory structure known as a package database. This directory is named package.conf.d ,
and contains a file for each package used for compiling a module and is combined with a binary cache of
package’s cabal data in package.cache .

When Cabal operates it stores the active package database in the environment variable: GHC_PACKAGE_PATH
To see which packages are currently available, use the ghc-pkg list command:

$ ghc-pkg list
/home/sdiehl/.ghcup/ghc/8.6.5/lib/ghc-8.6.5/package.conf.d

Cabal-2.4.0.1
array-0.5.3.0
base-4.12.0.0
binary-0.8.6.0
bytestring-0.10.8.2
containers-0.6.0.1
deepseq-1.4.4.0
directory-1.3.3.0
filepath-1.4.2.1
ghc-8.6.5
ghc-boot-8.6.5
ghc-boot-th-8.6.5
ghc-compact-0.1.0.0
ghc-heap-8.6.5
ghc-prim-0.5.3
ghci-8.6.5
haskeline-0.7.4.3
hpc-0.6.0.3
integer-gmp-1.0.2.0
libiserv-8.6.3
mtl-2.2.2
parsec-3.1.13.0
pretty-1.1.3.6
process-1.6.5.0
rts-1.0
stm-2.5.0.0
template-haskell-2.14.0.0
terminfo-0.4.1.2
text-1.2.3.1
time-1.8.0.2
transformers-0.5.6.2
unix-2.7.2.2
xhtml-3000.2.2.1

The package database can be queried for specific metadata of the cabal files associated with each
package. For example to query the version of base library currently used for compilation we can query
from the ghc-pkg command:

https://hackage.haskell.org/package/ghc-8.6.5/docs/DynFlags.html

399 GHC

$ ghc-pkg field base version
version: 4.12.0.0

$ ghc-pkg field rts license
license: BSD-3-Clause

$ ghc-pkg field haskeline exposed-modules
exposed-modules:

System.Console.Haskeline System.Console.Haskeline.Completion
System.Console.Haskeline.History System.Console.Haskeline.IO
System.Console.Haskeline.MonadException

30.5 HIE Bios
A session is fully specified by a set GHC dynflags that are needed to compile a module. Typically when
the compiler is invoked by Cabal these are all generated during compilation time. These flags contain the
entire transitive dependency graph of the module, the language extensions and the file system locations
of all paths. Given the bifucation of many of these tools setting up the GHC environment from inside
of libraries has been non-trivial in the past. HIE-bios is a new library which can read package metadata
from Cabal and Stack files and dynamically set up the appropriate session for a project.

Hie-bios will read a Cradle file (hie.yaml) file in the root of the workspace which describes how to
setup the environment. For example for using Stack this file would contain:

cradle: {stack: {component: "myproject:lib" }}

While using Cabal the file would contain:

cradle: {cabal: {component: "myproject:lib" }}

This is particularly useful for projects that require access to the internal compiler artifacts or do static
analysis on top of Haskell code. An example of setting a compiler session from a cradle is shown below:

import Control.Monad.Trans
import DynFlags
import GHC
import GHC.LanguageExtensions.Type
import GHC.Paths
import GhcMonad
import HIE.Bios
import InteractiveEval
import Outputable

example :: Ghc ()
example = do

GHC 400

cradle <- liftIO (loadImplicitCradle ".")
comp <- liftIO $ getCompilerOptions "." cradle
case comp of

CradleSuccess r -> do
liftIO (print "Success")
session <- initSession r
dflags <- getSessionDynFlags
let dflags' = foldl xopt_set dflags [ImplicitPrelude]
setSessionDynFlags

dflags'
{ hscTarget = HscInterpreted,

ghcLink = LinkInMemory,
ghcMode = CompManager

}
liftIO (putStrLn (showSDoc dflags (ppr session)))

CradleFail err -> liftIO $ print err
CradleNone -> liftIO $ print "No cradle"

pure ()

main :: IO ()
main = runGhc (Just GHC.Paths.libdir) example

30.6 Abstract Syntax Tree
GHC uses several syntax trees during its compilation. These are defined in the following modules:

• HsExpr - Syntax tree for the frontend of GHC compiler.
• StgSyn - Syntax tree of STG intermediate representation
• Cmm - Syntax tree for the CMM intermediate representation

GHC’s frontend source tree are grouped into datatypes for the following language constructs and use
the naming convention:

• Binds - Declarations of functions. For example the body of a class declaration or class instance.
• Decl - Declarations of datatypes, types, newtypes, etc.
• Expr - Expressions. For example, let statements, lambdas, if-blocks, do-blocks, etc.
• Lit - Literals. For example, integers, characters, strings, etc.
• Module - Modules including import declarations, exports and pragmas.
• Name - Names that occur in other constructs. Such as modules names, constructors and variables.
• Pat - Patterns that occur in case statements and binders.
• Type - Type syntax that occurs in toplevel signatures and explicit annotations.

Generally all AST in the frontend of the compiler is annotated with position information that is kept
around to give better error reporting about the provenance of the specific problematic set of the syntax
tree. This is done through a datatype GenLocated with attaches the position information l to element
e .

data GenLocated l e = L l e
deriving (Eq, Ord, Data, Functor, Foldable, Traversable)

type Located = GenLocated SrcSpan

401 GHC

For example, the type of located source expressions is defined by the type:

type LHsExpr p = Located (HsExpr p)
data HsExpr p
= HsVar (XVar p) (Located (IdP p))
| HsLam (XLam p) (MatchGroup p (LHsExpr p))
| HsApp (XApp p) (LHsExpr p) (LHsExpr p)
...

The HsSyn AST is reused across multiple compiler passes.

data GhcPass (c :: Pass)
data Pass = Parsed | Renamed | Typechecked

type GhcPs = GhcPass 'Parsed
type GhcRn = GhcPass 'Renamed
type GhcTc = GhcPass 'Typechecked

type family IdP p
type instance IdP GhcPs = RdrName
type instance IdP GhcRn = Name
type instance IdP GhcTc = Id

type LIdP p = Located (IdP p)

Individual elements of the syntax are defined by type families which a single parameter for the pass.

type family XVar x
type family XLam x
type family XApp x

The type of HsExpr used in the parser pass can then be defined simply as LHsExpr GhcPs and from the
typechecker pass LHsExpr GhcTc .

Names
GHC has an interesting zoo of names it uses internally for identifiers in the syntax tree. There are

more than the following but these are the primary ones you will see most often:

• RdrName - Names that come directly from the parser without metadata.
• OccName - Names with metadata about the namespace the variable is in.
• Name - A unique name introduced during the renamer pass with metadata about its provenance.
• Var - A typed variable name with metadata about its use sites.
• Id - A term-level identifier. Type Synonym for Var.
• TyVar - A type-level identifier. Type Synonym for Var.
• TcTyVar - A type variable used in the typechecker. Type Synonym for Var.

See: Trees That Grow

https://ghc.haskell.org/trac/ghc/wiki/ImplementingTreesThatGrow

GHC 402

30.7 Parser
The GHC parser is itself written in Happy. It defines its Parser monad as the following definition which
emits a sequences of Located tokens with the lexemes position information. The parser is embedded inside
the P monad.

%monad { P } { >>= } { return }
%lexer { (lexer True) } { L _ ITeof }
%tokentype { (Located Token) }

Since there are many flavours of Haskell syntax enabled by language syntax extensions, the monad
parser itself is passed a specific set of DynFlags which specify the language specific Haskell syntax to parse.
An example parser invocation would look like:

runParser :: DynFlags -> String -> P a -> ParseResult a
runParser flags str parser = unP parser parseState
where
filename = "<interactive>"
location = mkRealSrcLoc (mkFastString filename) 1 1
buffer = stringToStringBuffer str
parseState = mkPState flags buffer location

The parser argument above can be one of the following Happy entry point functions which parse
different fragments of the Haskell grammar.

• parseModule

• parseSignature

• parseStatement

• parseDeclaration

• parseExpression

• parseTypeSignature

• parseStmt

• parseIdentifier

• parseType

See:

• GHC Lexer.x
• GHC Parser.y
• ghc-lib-parser

30.8 Outputable
GHC internally use a pretty printer class for rendering its core structures out to text. This is based on
the Wadler-Leijen style and uses a Outputable class as its interface:

https://github.com/ghc/ghc/blob/master/compiler/parser/Lexer.x
https://github.com/ghc/ghc/blob/master/compiler/parser/Parser.y
https://hackage.haskell.org/package/ghc-lib-parser

403 GHC

class Outputable a where
ppr :: a -> SDoc
pprPrec :: Rational -> a -> SDoc

The primary renderer for SDoc types is showSDoc which takes as argument a set of DynFlags which
determine how the structure are printed.

showSDoc :: DynFlags -> SDoc -> String

We can also cheat and use a unsafe show which uses a dummy set of DynFlags.

-- | Show a GHC.Outputable structure
showGhc :: (GHC.Outputable a) => a -> String
showGhc = GHC.showPpr GHC.unsafeGlobalDynFlags

See:

• Outputable

30.9 Datatypes
GHC has many datatypes but several of them are central data structures that are the core datatypes that
are manipulated during compilation. These are divided into seven core categories.

Monads
The GHC monads which encapsulate the compiler driver pipeline and statefully hold the interactions

between the user and the internal compiler phases.

• GHC - The toplevel GHC monad that contains the compiler driver.
• P - The parser monad.
• Hsc - The compiler module for a single module.
• TcRn - The monad holding state for typechecker and renamer passes.
• DsM - The monad holding state for desugaring pass.
• SimplM - The monad holding state of simplification pass.
• MonadUnique - A monad for generating unique identifiers

Names

• ModuleName - A qualified module name.
• Name - A unique name generated after renaming pass with provenance information of the symbol.
• Var - A typed Name .
• Type - The representation of a type in the GHC type system.
• RdrName - A name generated from the parser without scoping or type information.
• Token - Alex lexer tokens
• SrcLoc - The position information of a lexeme within the source code.
• SrcSpan - The span information of a lexeme within the source code.
• Located - Source code location newtype wrapper for AST containing position and span information.

Session

https://hackage.haskell.org/package/ghc-8.6.5/docs/Outputable.html

GHC 404

• DynFlags - A mutable state holding all compiler flags and options for compiling a project.
• HscEnv - An immutable monad state holding the flags and session for compiling a single module.
• Settings - Immutable datatype holding holding system settings, architecture and paths for compi-

lation.
• Target - A compilation target.
• TargetId - Name of a compilation target, either module or file.
• HscTarget - Target code output. Either LLVM, ASM or interpreted.
• GhcMode - Operation mode of GHC, either multi-module compilation or single shot.
• ModSummary - An element in a project’s module graph containing file information and graph location.
• InteractiveContext - Context for GHCI interactive shell when using interpreter target.
• TypeEnv - A symbol table mapping from Names to TyThings.
• GlobalRdrEnv - A symbol table mapping RdrName to GlobalRdrElt .
• GlobalRdrElt - A symbol emitted by the parser with provenance about where it was defined and

brought into scope.
• TcGblEnv - A symbol table generated after a module is completed typechecking.
• FixityEnv - A symbol table mapping infix operators to fixity delcarations.
• Module - A module name and identifier.
• ModGuts - The total state of all passes accumulated by compiling a module. After compilation

ModIFace and ModDetails are kept.
• ModuleInfo - Container for information about a Module.
• ModDetails - Data structure summarises all metadata about a compiled module.
• AvailInfo - Symbol table of what objects are in scope.
• Class - Data structure holding all metadata about a typeclass definition.
• ClsInt - Data structure holding all metadata about a typeclass instance.
• FamInst - Data structure holding all metadata about a type/data family instance declaration.
• TyCon - Data structure holding all metadata about a type constructor.
• DataCon - Data structure holding all metadata about a data constructor.
• InstEnv - A InstEnv hodlings a mapping of known instances for that family.
• TyThing - A global name with a type attached. Classified by namespace.
• DataConRep - Data constructor representation generated from parser.
• GhcException - Exceptions thrown by GHC inside of Hsc monad for aberrant compiler behavior.

Panics or internal errors.

HsSyn

• HsModule - Haskell source module containing all toplevel definitions, pragmas and imports.
• HsBind - Universal type for any Haskell binding mapping names to scope.
• HsDecl - Toplevel declaration in a module.
• HsGroup - A classifier type of toplevel decalarations.
• HsExpr - An expression used in a declaration.
• HsLit - An literal expression (number, character, char, etc) used in a declaration.
• Pat - A pattern match occuring in a function declaration of left of a pattern binding.
• HsType - Haskell source representation of a type-level expression.
• Literal - Haskell source representation of a literal mapping to either a literal numeric type or a

machine type.

CoreSyn
The core syntax is a very small set of constructors for the Core intermediate language. Most of the

datatypes are contained in the Expr datatype. All core expressions consists of toplevel Bind of expressions
objects.

• Expr - Core expression.
• Bind - Core binder, either recursive or non-recursive.

405 GHC

• Arg - Expression that occur in function arguments.
• Alt - A pattern match case split alternative.
• AltCon - A case alterantive constructor.

StgSyn
Spineless tagless G-machine or STG is the intermediate representation GHC uses before generating

native code. It is an even simpler language than Core and models a virtual machine which maps to the
native compilation target.

• StgTopBinding - A toplevel module STG binding.
• StgBinding - An STG binding, either recursive or non-recursive.
• StgExpr - A STG expression over Id names.

– StgApp - Application of a function to a fixed set of arguments.
– StgLit - An expression literal.
– StgConApp - An application of a data constructor to a fixed set of values.
– StgOpApp - An application of a primop to a fixed set of arguments.
– StgLam - An STG lambda binding.
– StgCase - An STG case expansion.
– StgLet - An STG let binding.

30.10 Core
Core is the explicitly typed System-F family syntax through which all Haskell constructs can be expressed.

data Bind b
= NonRec b (Expr b)
| Rec [(b, Expr b)]

data Expr b
= Var Id
| Lit Literal
| App (Expr b) (Arg b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b Type [Alt b]
| Cast (Expr b) Coercion
| Tick (Tickish Id) (Expr b)
| Type Type
| Coercion Coercion

To inspect the core from GHCi we can invoke it using the following flags and the following shell
alias. We have explicitly disabled the printing of certain metadata and longform names to make the
representation easier to read.

alias ghci-core="ghci -ddump-simpl -dsuppress-idinfo \
-dsuppress-coercions -dsuppress-type-applications \
-dsuppress-uniques -dsuppress-module-prefixes"

GHC 406

At the interactive prompt we can then explore the core representation interactively:

$ ghci-core
�: let f x = x + 2 ; f :: Int -> Int

==================== Simplified expression ====================
returnIO

(: ((\ (x :: Int) -> + $fNumInt x (I# 2)) `cast` ...) ([]))

�: let f x = (x, x)

==================== Simplified expression ====================
returnIO (: ((\ (@ t) (x :: t) -> (x, x)) `cast` ...) ([]))

ghc-core is also very useful for looking at GHC’s compilation artifacts.

$ ghc-core --no-cast --no-asm

Alternatively the major stages of the compiler (parse tree, core, stg, cmm, asm) can be manually
outputted and inspected by passing several flags to the compiler:

$ ghc -ddump-to-file -ddump-parsed -ddump-simpl -ddump-stg -ddump-cmm -ddump-asm

Reading Core
Core from GHC is roughly human readable, but it’s helpful to look at simple human written examples

to get the hang of what’s going on.

id :: a -> a
id x = x

id :: forall a. a -> a
id = \ (@ a) (x :: a) -> x

idInt :: GHC.Types.Int -> GHC.Types.Int
idInt = id @ GHC.Types.Int

compose :: (b -> c) -> (a -> b) -> a -> c
compose f g x = f (g x)

http://hackage.haskell.org/package/ghc-core

407 GHC

compose :: forall b c a. (b -> c) -> (a -> b) -> a -> c
compose = \ (@ b) (@ c) (@ a) (f1 :: b -> c) (g :: a -> b) (x1 :: a) -> f1 (g x1)

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

map :: forall a b. (a -> b) -> [a] -> [b]
map =
\ (@ a) (@ b) (f :: a -> b) (xs :: [a]) ->
case xs of _ {

[] -> [] @ b;
: y ys -> : @ b (f y) (map @ a @ b f ys)

}

Machine generated names are created for a lot of transformation of Core. Generally they consist of a
prefix and unique identifier. The prefix is often pass specific (e.g ds for desugar generated names) and
sometimes specific names are generated for specific automatically generated code. A list of the common
prefixes and their meaning is show below.

Prefix Description
$f... Dict-fun identifiers (from inst decls)
$dmop Default method for ‘op’
$wf Worker for function ‘f’
$sf Specialised version of f
$gdm Generated class method
$d Dictionary names
$s Specialized function name
$f Foreign export
$pnC n’th superclass selector for class C
T:C Tycon for dictionary for class C
D:C Data constructor for dictionary for class C
NTCo:T Coercion for newtype T to its underlying runtime representation

Of important note is that the Λ and � for type-level and value-level lambda abstraction are represented
by the same symbol (\) in core, which is a simplifying detail of the GHC’s implementation but a source
of some confusion when starting.

-- System-F Notation
Λ b c a. � (f1 : b -> c) (g : a -> b) (x1 : a). f1 (g x1)

-- Haskell Core
\ (@ b) (@ c) (@ a) (f1 :: b -> c) (g :: a -> b) (x1 :: a) -> f1 (g x1)

GHC 408

The seq function has an intuitive implementation in the Core language.

x `seq` y

case x of _ {
__DEFAULT -> y

}

One particularly notable case of the Core desugaring process is that pattern matching on overloaded
numbers implicitly translates into equality test (i.e. Eq).

f 0 = 1
f 1 = 2
f 2 = 3
f 3 = 4
f 4 = 5
f _ = 0

f :: forall a b. (Eq a, Num a, Num b) => a -> b
f =

\ (@ a)
(@ b)
($dEq :: Eq a)
($dNum :: Num a)
($dNum1 :: Num b)
(ds :: a) ->
case == $dEq ds (fromInteger $dNum (__integer 0)) of _ {

False ->
case == $dEq ds (fromInteger $dNum (__integer 1)) of _ {
False ->

case == $dEq ds (fromInteger $dNum (__integer 2)) of _ {
False ->
case == $dEq ds (fromInteger $dNum (__integer 3)) of _ {

False ->
case == $dEq ds (fromInteger $dNum (__integer 4)) of _ {

False -> fromInteger $dNum1 (__integer 0);
True -> fromInteger $dNum1 (__integer 5)

};
True -> fromInteger $dNum1 (__integer 4)

};
True -> fromInteger $dNum1 (__integer 3)

};
True -> fromInteger $dNum1 (__integer 2)

};
True -> fromInteger $dNum1 (__integer 1)

}

409 GHC

Of course, adding a concrete type signature changes the desugar just matching on the unboxed values.

f :: Int -> Int
f =
\ (ds :: Int) ->
case ds of _ { I# ds1 ->
case ds1 of _ {

__DEFAULT -> I# 0;
0 -> I# 1;
1 -> I# 2;
2 -> I# 3;
3 -> I# 4;
4 -> I# 5

}
}

See:

• Core Spec
• CoreSynType

30.11 Inliner

infixr 0 $

($):: (a -> b) -> a -> b
f $ x = f x

Having to enter a secondary closure every time we used ($) would introduce an enormous overhead.
Fortunately GHC has a pass to eliminate small functions like this by simply replacing the function call
with the body of its definition at appropriate call-sites. The compiler contains a variety of heuristics for
determining when this kind of substitution is appropriate and the potential costs involved.

In addition to the automatic inliner, manual pragmas are provided for more granular control over
inlining. It’s important to note that naive inlining quite often results in significantly worse performance
and longer compilation times.

{-# INLINE func #-}
{-# INLINABLE func #-}
{-# NOINLINE func #-}

For example the contrived case where we apply a binary function to two arguments. The function
body is small and instead of entering another closure just to apply the given function, we could in fact
just inline the function application at the call site.

https://github.com/ghc/ghc/blob/master/docs/core-spec/core-spec.pdf
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/CoreSynType

GHC 410

{-# INLINE foo #-}
{-# NOINLINE bar #-}

foo :: (a -> b -> c) -> a -> b -> c
foo f x y = f x y

bar :: (a -> b -> c) -> a -> b -> c
bar f x y = f x y

test1 :: Int
test1 = foo (+) 10 20

test2 :: Int
test2 = bar (+) 20 30

Looking at the core, we can see that in test1 the function has indeed been expanded at the call site
and simply performs the addition there instead of another indirection.

test1 :: Int
test1 =
let {

f :: Int -> Int -> Int
f = + $fNumInt } in

let {
x :: Int
x = I# 10 } in

let {
y :: Int
y = I# 20 } in

f x y

test2 :: Int
test2 = bar (+ $fNumInt) (I# 20) (I# 30)

Cases marked with NOINLINE generally indicate that the logic in the function is using something like
unsafePerformIO or some other unholy function. In these cases naive inlining might duplicate effects at

multiple call-sites throughout the program which would be undesirable.
See:

• Secrets of the Glasgow Haskell Compiler inliner

30.12 Primops
GHC has many primitive operations that are intrinsics built into the compiler. You can manually invoke
these functions inside of optimised code which allows you to drop down to the same level of performance
you can achieve in C or by hand-writing inline assembly. These functions are intrinsics that are builtin to
the compiler and operate over unboxed machines types.

https://research.microsoft.com/en-us/um/people/simonpj/Papers/inlining/inline.pdf

411 GHC

(+#) :: Int# -> Int# -> Int#
gtChar# :: Char# -> Char# -> Int#
byteSwap64# :: Word# -> Word#

Depending on the choice of code generator and CPU architecture these instructions will map to single
CPU instructions over machines.

See ghc-prim

30.13 SIMD Intrinsics
GHC has procedures for generating code that use SIMD vector instructions when using the LLVM backend
(-fllvm). For example the following <8xfloat> and <8xdouble> are used internally by the following
datatypes exposed by ghc-prim .

• FloatX8#
• DoubleX8#

And operations over these map to single CPU instructions that work with the bulk values instead of
single values. For instance adding two vectors:

-- Add two vectors element-wise.
plusDoubleX8# :: DoubleX8# -> DoubleX8# -> DoubleX8#

For example:

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
{-# OPTIONS_GHC -mavx #-}
{-# OPTIONS_GHC -msse #-}
{-# OPTIONS_GHC -msse2 #-}
{-# OPTIONS_GHC -msse4 #-}

import GHC.Exts
import GHC.Prim

data FloatX4 = FX4# FloatX4#

instance Show FloatX4 where
show (FX4# f) = case unpackFloatX4# f of
(# a, b, c, d #) -> show (F# a, F# b, F# c, F# d)

main :: IO ()
main = do
let a = packFloatX4# (# 4.5#, 7.8#, 2.3#, 6.5# #)
let b = packFloatX4# (# 8.2#, 6.3#, 4.7#, 9.2# #)
let c = FX4# (broadcastFloatX4# 1.5#)

https://hackage.haskell.org/package/ghc-prim-0.5.3/docs/GHC-Prim.html

GHC 412

print (FX4# a)
print (FX4# (plusFloatX4# a b))
print c

When you generate this code to LLVM you will see that GHC is indeed allocating the values as vector
types if you browse the assembly output.

%XMM1_Var = alloca <4 x i32>, i32 1
store <4 x i32> undef, <4 x i32>* %XMM1_Var, align 1

Using the native SIMD instructions you can perform low-level vectorised operations over the unboxed
memory, typically found in numerical computing problems.

See: SIMD Operations

30.14 Rewrite Rules
Consider the composition of two fmaps. This operation maps a function g over a list xs and then maps
a function f over the resulting list. This results in two full traversals of a list of length n.

map f (map g xs)

This is equivalent to the following more efficient form which applies the composition of f and g over
the list elementwise resulting in a single iteration of the list instead. For large lists this will be vastly more
efficient.

map (f.g) xs

GHC is a clever compiler and allows us to write custom rules to transform the AST of our programs
at compile time in order to do these kind of optimisations. These are called fusion rules and many
high-performance libraries make use of them to generate more optimal code.

By adding a RULES pragma to a module where map is defined we can tell GHC to rewrite all cases
of double map to their more optimal form across all modules that use this definition. Rule are applied
during the optimiser pass in GHC compilation.

{-# RULES "map/map" forall f g xs. map f (map g xs) = map (f.g) xs #-}

It is important to note that these rewrite rules must be syntactically valid Haskell, but GHC makes no
guarantees that they are semantically valid. One could very easily introduce a rewrite rule that introduces
subtle bugs by redefining functions nonsensically and GHC will happily rewrite away. Be careful when
doing these kind of optimisations.

• List Fusion

https://hackage.haskell.org/package/ghc-prim-0.5.3/docs/GHC-Prim.html#g:29
https://downloads.haskell.org/~ghc/7.10.3/docs/html/users_guide/rewrite-rules.html

413 GHC

30.15 Boot Libraries
GHC itself ships with a variety of libraries that are necessary to bootstrap the compiler and compile itself.

• array - Mutable and immutable array data structures.
• base - The base library. See Base.
• binary - Binary serialisation to ByteStrings
• bytestring - Unboxed arrays of bytes.
• Cabal - The Cabal build system.
• containers - The default data structures.
• deepseq - Deeply evaluate nested data structures.
• directory - Directory and file traversal.
• dist-haddock - Haddock build utilities.
• filepath - File path manipulation.
• ghc-boot - Shared datatypes for GHC package databases
• ghc-boot-th - Shared datatypes for GHC and TemplateHaskell iserv
• ghc-compact - GHC support for compact memory regions.
• ghc-heap - C library for Haskell GC types.
• ghci - GHCI interactive shell.
• ghc-prim - GHC builtin primitive operations.
• haskeline - Readline library.
• hpc - Code coverage reporting.
• integer-gmp - GMP integer datatypes for GHC.
• libiserv - External interpreter for Template Haskell.
• mtl - Monad transformers library.
• parsec - Parser combinators.
• pretty - Pretty printer.
• process - Operating system process utilities.
• stm - Software transaction memory.
• template-haskell - Metaprogramming for GHC.
• terminfo - System terminal information.
• text - Unboxed arrays of Unicode characters.
• time - System time.
• transformers - Monad transformers library.
• unix - Interactions with Linux operating system.
• xhtml - HTML generation utilities.

30.16 Dictionaries
The Haskell language defines the notion of Typeclasses but is agnostic to how they are implemented in a
Haskell compiler. GHC’s particular implementation uses a pass called the dictionary passing translation
part of the elaboration phase of the typechecker which translates Core functions with typeclass con-
straints into implicit parameters of which record-like structures containing the function implementations
are passed.

class Num a where
(+) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a

This class can be thought as the implementation equivalent to the following parameterized record of
functions.

GHC 414

data DNum a = DNum (a -> a -> a) (a -> a -> a) (a -> a)

add (DNum a m n) = a
mul (DNum a m n) = m
neg (DNum a m n) = n

numDInt :: DNum Int
numDInt = DNum plusInt timesInt negateInt

numDFloat :: DNum Float
numDFloat = DNum plusFloat timesFloat negateFloat

+ :: forall a. Num a => a -> a -> a
+ = \ (@ a) (tpl :: Num a) ->
case tpl of _ { D:Num tpl _ _ -> tpl }

* :: forall a. Num a => a -> a -> a
* = \ (@ a) (tpl :: Num a) ->
case tpl of _ { D:Num _ tpl _ -> tpl }

negate :: forall a. Num a => a -> a
negate = \ (@ a) (tpl :: Num a) ->
case tpl of _ { D:Num _ _ tpl -> tpl }

Num and Ord have simple translations but for monads with existential type variables in their signatures,
the only way to represent the equivalent dictionary is using RankNTypes . In addition a typeclass may also
include superclasses which would be included in the typeclass dictionary and parameterized over the
same arguments and an implicit superclass constructor function is created to pull out functions from the
superclass for the current monad.

data DMonad m = DMonad
{ bind :: forall a b. m a -> (a -> m b) -> m b
, return :: forall a. a -> m a
}

class (Functor t, Foldable t) => Traversable t where
traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
traverse f = sequenceA . fmap f

data DTraversable t = DTraversable
{ dFunctorTraversable :: DFunctor t -- superclass dictionary

415 GHC

, dFoldableTraversable :: DFoldable t -- superclass dictionary
, traverse :: forall a. Applicative f => (a -> f b) -> t a -> f (t b)
}

Indeed this is not that far from how GHC actually implements typeclasses. It elaborates into projection
functions and data constructors nearly identical to this, and are expanded out to a dictionary argument
for each typeclass constraint of every polymorphic function.

30.17 Specialization
Overloading in Haskell is normally not entirely free by default, although with an optimization called
specialization it can be made to have zero cost at specific points in the code where performance is crucial.
This is not enabled by default by virtue of the fact that GHC is not a whole-program optimizing compiler
and most optimizations (not all) stop at module boundaries.

GHC’s method of implementing typeclasses means that explicit dictionaries are threaded around im-
plicitly throughout the call sites. This is normally the most natural way to implement this functionality
since it preserves separate compilation. A function can be compiled independently of where it is declared,
not recompiled at every point in the program where it’s called. The dictionary passing allows the caller
to thread the implementation logic for the types to the call-site where it can then be used throughout the
body of the function.

Of course this means that in order to get at a specific typeclass function we need to project (possibly
multiple times) into the dictionary structure to pluck out the function reference. The runtime makes this
very cheap but not entirely free.

Many C++ compilers or whole program optimizing compilers do the opposite however, they explicitly
specialize each and every function at the call site replacing the overloaded function with its type-specific
implementation. We can selectively enable this kind of behavior using class specialization.

module Specialize (spec, nonspec, f) where

{-# SPECIALIZE INLINE f :: Double -> Double -> Double #-}

f :: Floating a => a -> a -> a
f x y = exp (x + y) * exp (x + y)

nonspec :: Float
nonspec = f (10 :: Float) (20 :: Float)

spec :: Double
spec = f (10 :: Double) (20 :: Double)

Non-specialized

f :: forall a. Floating a => a -> a -> a
f =
\ (@ a) ($dFloating :: Floating a) (eta :: a) (eta1 :: a) ->
let {

a :: Fractional a
a = $p1Floating @ a $dFloating } in

GHC 416

let {
$dNum :: Num a
$dNum = $p1Fractional @ a a } in

* @ a
$dNum
(exp @ a $dFloating (+ @ a $dNum eta eta1))
(exp @ a $dFloating (+ @ a $dNum eta eta1))

In the specialized version the typeclass operations placed directly at the call site and are simply unboxed
arithmetic. This will map to a tight set of sequential CPU instructions and is very likely the same code
generated by C.

spec :: Double
spec = D# (*## (expDouble# 30.0) (expDouble# 30.0))

The non-specialized version has to project into the typeclass dictionary ($fFloatingFloat) 6 times and
likely go through around 25 branches to perform the same operation.

nonspec :: Float
nonspec =
f @ Float $fFloatingFloat (F# (__float 10.0)) (F# (__float 20.0))

For a tight loop over numeric types specializing at the call site can result in orders of magnitude
performance increase. Although the cost in compile-time can often be non-trivial and when used at many
function call-sites this can slow GHC’s simplifier pass to a crawl.

The best advice is profile and look for large uses of dictionary projection in tight loops and then
specialize and inline in these places.

Using the SPECIALISE INLINE pragma can unintentionally cause GHC to diverge if applied over a re-
cursive function, it will try to specialize itself infinitely.

30.18 Static Compilation
On Linux, Haskell programs can be compiled into a standalone statically linked binary that includes the
runtime statically linked into it.

$ ghc -O2 --make -static -optc-static -optl-static -optl-pthread Example.hs
$ file Example
Example: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), statically linked, for GNU/Linux 2.6.32, not stripped
$ ldd Example

not a dynamic executable

In addition the file size of the resulting binary can be reduced by stripping unneeded symbols.

417 GHC

$ strip Example

upx can additionally be used to compress the size of the executable down further.

30.19 Unboxed Types
The usual numerics types in Haskell can be considered to be a regular algebraic datatype with special
constructor arguments for their underlying unboxed values. Normally unboxed types and explicit unboxing
are not used in normal code, they are wired-in to the compiler.

data Int = I# Int#

data Integer
= S# Int# -- Small integers
| J# Int# ByteArray# -- Large GMP integers

data Float = F# Float#

Syntax Primitive Type
3# GHC.Prim.Int#
3## GHC.Prim.Word#
3.14# GHC.Prim.Float#
3.14## GHC.Prim.Double#
'c'# GHC.Prim.Char#
"Haskell"## GHC.Prim.Addr#

An unboxed type has kind # and will never unify a type variable of kind * . Intuitively a type with
kind * indicates a type with a uniform runtime representation that can be used polymorphically.

• Lifted - Can contain a bottom term, represented by a pointer. (Int , Any , (,))
• Unlited - Cannot contain a bottom term, represented by a value on the stack. (Int# , (#, #))

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}

import GHC.Exts
import GHC.Prim

ex1 :: Bool
ex1 = isTrue# (gtChar# a# b#)
where
!(C# a#) = 'a'
!(C# b#) = 'b'

http://upx.sourceforge.net/

GHC 418

ex2 :: Int
ex2 = I# (a# +# b#)
where

!(I# a#) = 1
!(I# b#) = 2

ex3 :: Int
ex3 = (I# (1# +# 2# *# 3# +# 4#))

ex4 :: (Int, Int)
ex4 = (I# (dataToTag# False), I# (dataToTag# True))

The function for integer arithmetic used in the Num typeclass for Int is just pattern matching on this
type to reveal the underlying unboxed value, performing the builtin arithmetic and then performing the
packing up into Int again.

plusInt :: Int -> Int -> Int
(I# x) `plusInt` (I# y) = I# (x +# y)

Where (+#) is a low level function built into GHC that maps to intrinsic integer addition instruction
for the CPU.

plusInt :: Int -> Int -> Int
plusInt a b = case a of {

(I# a_) -> case b of {
(I# b_) -> I# (+# a_ b_);

};
};

Runtime values in Haskell are by default represented uniformly by a boxed StgClosure* struct which
itself contains several payload values, which can themselves either be pointers to other boxed values or to
unboxed literal values that fit within the system word size and are stored directly within the closure in
memory. The layout of the box is described by a bitmap in the header for the closure which describes
which values in the payload are either pointers or non-pointers.

The unpackClosure# primop can be used to extract this information at runtime by reading off the
bitmap on the closure.

{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}

--{-# OPTIONS_GHC -O1 #-}

module Main where

import Foreign
import GHC.Base

419 GHC

import GHC.Exts

data Size
= Size

{ ptrs :: Int,
nptrs :: Int,
size :: Int

}
deriving (Show)

unsafeSizeof :: a -> Size
unsafeSizeof a =
case unpackClosure# a of
(# x, ptrs, nptrs #) ->

let header = sizeOf (undefined :: Int)
ptr_c = I# (sizeofArray# ptrs)
nptr_c = I# (sizeofByteArray# nptrs) `div` sizeOf (undefined :: Word)
payload = I# (sizeofArray# ptrs +# sizeofByteArray# nptrs)
size = header + payload

in Size ptr_c nptr_c size

data A = A {-# UNPACK #-} !Int

data B = B Int

main :: IO ()
main = do
print (unsafeSizeof (A 42))
print (unsafeSizeof (B 42))

For example the datatype with the UNPACK pragma contains 1 non-pointer and 0 pointers.

data A = A {-# UNPACK #-} !Int
Size {ptrs = 0, nptrs = 1, size = 16}

While the default packed datatype contains 1 pointer and 0 non-pointers.

data B = B Int
Size {ptrs = 1, nptrs = 0, size = 9}

The closure representation for data constructors are also “tagged” at the runtime with the tag of the
specific constructor. This is however not a runtime type tag since there is no way to recover the type
from the tag as all constructors simply use the sequence (0, 1, 2, …). The tag is used to discriminate cases
in pattern matching. The builtin dataToTag# can be used to pluck off the tag for an arbitrary datatype.
This is used in some cases when desugaring pattern matches.

GHC 420

dataToTag# :: a -> Int#

For example:

-- data Bool = False | True
-- False ~ 0
-- True ~ 1

a :: (Int, Int)
a = (I# (dataToTag# False), I# (dataToTag# True))
-- (0, 1)

-- data Ordering = LT | EQ | GT
-- LT ~ 0
-- EQ ~ 1
-- GT ~ 2

b :: (Int, Int, Int)
b = (I# (dataToTag# LT), I# (dataToTag# EQ), I# (dataToTag# GT))
-- (0, 1, 2)

-- data Either a b = Left a | Right b
-- Left ~ 0
-- Right ~ 1

c :: (Int, Int)
c = (I# (dataToTag# (Left 0)), I# (dataToTag# (Right 1)))
-- (0, 1)

String literals included in the source code are also translated into several primop operations. The
Addr# type in Haskell stands for a static contiguous buffer pre-allocated on the Haskell heap that can

hold a char* sequence. The operation unpackCString# can scan this buffer and fold it up into a list of
Chars from inside Haskell.

unpackCString# :: Addr# -> [Char]

This is done in the early frontend desugarer phase, where literals are translated into Addr# inline
instead of giant chain of Cons’d characters. So our “Hello World” translates into the following Core:

-- print "Hello World"
print (unpackCString# "Hello World"#)

See:

• Unboxed Values as First-Class Citizens

http://www.haskell.org/ghc/docs/papers/unboxed-values.ps.gz

421 GHC

30.20 IO/ST
Both the IO and the ST monad have special state in the GHC runtime and share a very similar imple-
mentation. Both ST a and IO a are passing around an unboxed tuple of the form:

(# token, a #)

The RealWorld# token is “deeply magical” and doesn’t actually expand into any code when compiled,
but simply threaded around through every bind of the IO or ST monad and has several properties of
being unique and not being able to be duplicated to ensure sequential IO actions are actually sequential.
unsafePerformIO can thought of as the unique operation which discards the world token and plucks the a

out, and is as the name implies not normally safe.
The PrimMonad abstracts over both these monads with an associated data family for the world token or

ST thread, and can be used to write operations that generic over both ST and IO. This is used extensively
inside of the vector package to allow vector algorithms to be written generically either inside of IO or ST.

{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}

import GHC.IO (IO(..))
import GHC.Prim (State#, RealWorld)
import GHC.Base (realWorld#)

instance Monad IO where
m >> k = m >>= \ _ -> k
return = returnIO
(>>=) = bindIO
fail s = failIO s

returnIO :: a -> IO a
returnIO x = IO $ \ s -> (# s, x #)

bindIO :: IO a -> (a -> IO b) -> IO b
bindIO (IO m) k = IO $ \ s -> case m s of (# new_s, a #) -> unIO (k a) new_s

thenIO :: IO a -> IO b -> IO b
thenIO (IO m) k = IO $ \ s -> case m s of (# new_s, _ #) -> unIO k new_s

unIO :: IO a -> (State# RealWorld -> (# State# RealWorld, a #))
unIO (IO a) = a

{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE TypeFamilies #-}

import GHC.IO (IO(..))
import GHC.ST (ST(..))
import GHC.Prim (State#, RealWorld)

GHC 422

import GHC.Base (realWorld#)

class Monad m => PrimMonad m where
type PrimState m
primitive :: (State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
internal :: m a -> State# (PrimState m) -> (# State# (PrimState m), a #)

instance PrimMonad IO where
type PrimState IO = RealWorld
primitive = IO
internal (IO p) = p

instance PrimMonad (ST s) where
type PrimState (ST s) = s
primitive = ST
internal (ST p) = p

30.21 ghc-heap-view
Through some dark runtime magic we can actually inspect the StgClosure structures at runtime using
various C and Cmm hacks to probe at the fields of the structure’s representation to the runtime. The
library ghc-heap-view can be used to introspect such things, although there is really no use for this kind
of thing in everyday code it is very helpful when studying the GHC internals to be able to inspect the
runtime implementation details and get at the raw bits underlying all Haskell types.

{-# LANGUAGE MagicHash #-}

import GHC.Exts
import GHC.HeapView

import System.Mem

main :: IO ()
main = do

-- Constr
clo <- getClosureData $! ([1,2,3] :: [Int])
print clo

-- Thunk
let thunk = id (1+1)
clo <- getClosureData thunk
print clo

-- evaluate to WHNF
thunk `seq` return ()

-- Indirection
clo <- getClosureData thunk
print clo

423 GHC

-- force garbage collection
performGC

-- Value
clo <- getClosureData thunk
print clo

A constructor (in this for cons constructor of list type) is represented by a CONSTR closure that holds
two pointers to the head and the tail. The integer in the head argument is a static reference to the
pre-allocated number and we see a single static reference in the SRT (static reference table).

ConsClosure {
info = StgInfoTable {
ptrs = 2,
nptrs = 0,
tipe = CONSTR_2_0,
srtlen = 1

},
ptrArgs = [0x000000000074aba8/1,0x00007fca10504260/2],
dataArgs = [],
pkg = "ghc-prim",
modl = "GHC.Types",
name = ":"

}

We can also observe the evaluation and update of a thunk in process (id (1+1)). The initial thunk
is simply a thunk type with a pointer to the code to evaluate it to a value.

ThunkClosure {
info = StgInfoTable {
ptrs = 0,
nptrs = 0,
tipe = THUNK,
srtlen = 9

},
ptrArgs = [],
dataArgs = []

}

When forced it is then evaluated and replaced with an Indirection closure which points at the computed
value.

BlackholeClosure {
info = StgInfoTable {
ptrs = 1,
nptrs = 0,

GHC 424

tipe = BLACKHOLE,
srtlen = 0

},
indirectee = 0x00007fca10511e88/1

}

When the copying garbage collector passes over the indirection, it then simply replaces the indirection
with a reference to the actual computed value computed by indirectee so that future access does need to
chase a pointer through the indirection pointer to get the result.

ConsClosure {
info = StgInfoTable {

ptrs = 0,
nptrs = 1,
tipe = CONSTR_0_1,
srtlen = 0

},
ptrArgs = [],
dataArgs = [2],
pkg = "integer-gmp",
modl = "GHC.Integer.Type",
name = "S#"

}

30.22 STG
After being compiled into Core, a program is translated into a very similar intermediate form known
as STG (Spineless Tagless G-Machine) an abstract machine model that makes all laziness explicit.
The spineless indicates that function applications in the language do not have a spine of applications of
functions are collapsed into a sequence of arguments. Currying is still present in the semantics since arity
information is stored and partially applied functions will evaluate differently than saturated functions.

-- Spine
f x y z = App (App (App f x) y) z

-- Spineless
f x y z = App f [x, y, z]

All let statements in STG bind a name to a lambda form. A lambda form with no arguments is a
thunk, while a lambda-form with arguments indicates that a closure is to be allocated that captures the
variables explicitly mentioned.

Thunks themselves are either reentrant (\r) or updatable (\u) indicating that the thunk and either
yields a value to the stack or is allocated on the heap after the update frame is evaluated. All subsequent
entries of the thunk will yield the already-computed value without needing to redo the same work.

A lambda form also indicates the static reference table a collection of references to static heap allocated
values referred to by the body of the function.

For example turning on -ddump-stg we can see the expansion of the following compose function.

425 GHC

-- Frontend
compose f g = \x -> f (g x)

-- Core
compose :: forall t t1 t2. (t1 -> t) -> (t2 -> t1) -> t2 -> t
compose =
\ (@ t) (@ t1) (@ t2) (f :: t1 -> t) (g :: t2 -> t1) (x :: t2) ->
f (g x)

-- STG
compose :: forall t t1 t2. (t1 -> t) -> (t2 -> t1) -> t2 -> t =

\r [f g x] let { sat :: t1 = \u [] g x; } in f sat;
SRT(compose): []

For a more sophisticated example, let’s trace the compilation of the factorial function.

-- Frontend
fac :: Int -> Int -> Int
fac a 0 = a
fac a n = fac (n*a) (n-1)

-- Core
Rec {
fac :: Int -> Int -> Int
fac =
\ (a :: Int) (ds :: Int) ->
case ds of wild { I# ds1 ->
case ds1 of _ {

__DEFAULT ->
fac (* @ Int $fNumInt wild a) (- @ Int $fNumInt wild (I# 1));

0 -> a
}
}

end Rec }

-- STG
fac :: Int -> Int -> Int =

\r srt:(0,*bitmap*) [a ds]
case ds of wild {

GHC 426

I# ds1 ->
case ds1 of _ {
__DEFAULT ->

let {
sat :: Int =

\u srt:(1,*bitmap*) []
let { sat :: Int = NO_CCS I#! [1]; } in - $fNumInt wild sat; } in

let { sat :: Int = \u srt:(1,*bitmap*) [] * $fNumInt wild a;
} in fac sat sat;

0 -> a;
};

};
SRT(fac): [fac, $fNumInt]

Notice that the factorial function allocates two thunks (look for \u) inside of the loop which are
updated when computed. It also includes static references to both itself (for recursion) and the dictionary
for instance of Num typeclass over the type Int .

The type system of STG system consists of the following types. The size of these types depend on the
size of a void* pointer on the architecture.

• StgWord - An unsigned system integer type of word size
• StgPtr - Basic pointer type
• StgBool - Boolean int bit flag
• StgInt - Int#
• StgChar - Char#
• StgFloat - Float#
• StgDouble - Double#
• StgAddr - Addr# (void * pointer)
• StgStablePtr - StablePtr#
• StgOffset - Byte offset within a closure
• StgFunPtr - Pointer to a C functions
• StgVolatilePtr - Pointer to a volatile word

30.23 Worker/Wrapper
With -O2 turned on GHC will perform a special optimization known as the Worker-Wrapper transforma-
tion which will split the logic of the factorial function across two definitions, the worker will operate over
stack unboxed allocated machine integers which compiles into a tight inner loop while the wrapper calls
into the worker and collects the end result of the loop and packages it back up into a boxed heap value.
This can often be an order of of magnitude faster than the naive implementation which needs to pack and
unpack the boxed integers on every iteration.

-- Worker
$wfac :: Int# -> Int# -> Int# =

\r [ww ww1]
case ww1 of ds {
__DEFAULT ->

case -# [ds 1] of sat {
__DEFAULT ->

case *# [ds ww] of sat { __DEFAULT -> $wfac sat sat; };

427 GHC

};
0 -> ww;

};
SRT($wfac): []

-- Wrapper
fac :: Int -> Int -> Int =

\r [w w1]
case w of _ {

I# ww ->
case w1 of _ {

I# ww1 -> case $wfac ww ww1 of ww2 { __DEFAULT -> I# [ww2]; };
};

};
SRT(fac): []

See:

• Writing Haskell as Fast as C

30.24 Z-Encoding
The Z-encoding is Haskell’s convention for generating names that are safely represented in the compiler
target language. Simply put the z-encoding renames many symbolic characters into special sequences of
the z character.

String Z-Encoded String
foo foo
z zz
Z ZZ
() Z0T
(,) Z2T
(,,) Z3T
_ zu
(ZL
) ZR
: ZC
zh
. zi
(#,#) Z2H
(->) ZLzmzgZR

In this way we don’t have to generate unique unidentifiable names for character rich names and can
simply have a straightforward way to translate them into something unique but identifiable.

So for some example names from GHC generated code:

Z-Encoded String Decoded String
ZCMain_main_closure :Main_main_closure
base_GHCziBase_map_closure base_GHC.Base_map_closure
base_GHCziInt_I32zh_con_info base_GHC.Int_I32#_con_info

https://donsbot.wordpress.com/2008/05/06/write-haskell-as-fast-as-c-exploiting-strictness-laziness-and-recursion/

GHC 428

Z-Encoded String Decoded String
ghczmprim_GHCziTuple_Z3T_con_info ghc-prim_GHC.Tuple_(,,)_con_in
ghczmprim_GHCziTypes_ZC_con_info ghc-prim_GHC.Types_:_con_info

30.25 Cmm
Cmm is GHC’s complex internal intermediate representation that maps directly onto the generated code
for the compiler target. Cmm code generated from Haskell is CPS-converted, all functions never return a
value, they simply call the next frame in the continuation stack. All evaluation of functions proceed by
indirectly jumping to a code object with its arguments placed on the stack by the caller.

This is drastically different than C’s evaluation model, where are placed on the stack and a function
yields a value to the stack after it returns.

There are several common suffixes you’ll see used in all closures and function names:

Symbol Meaning
0 No argument
p Garbage Collected Pointer
n Word-sized non-pointer
l 64-bit non-pointer (long)
v Void
f Float
d Double
v16 16-byte vector
v32 32-byte vector
v64 64-byte vector

Cmm Registers
There are 10 registers that described in the machine model. Sp is the pointer to top of the stack,

SpLim is the pointer to last element in the stack. Hp is the heap pointer, used for allocation and garbage
collection with HpLim the current heap limit.

The R1 register always holds the active closure, and subsequent registers are arguments passed in
registers. Functions with more than 10 values spill into memory.

• Sp

• SpLim

• Hp

• HpLim

• HpAlloc

• R1
• R2
• R3
• R4
• R5
• R6
• R7
• R8
• R9
• R10

Examples
To understand Cmm it is useful to look at the code generated by the equivalent Haskell and slowly

understand the equivalence and mechanical translation maps one to the other.

429 GHC

There are generally two parts to every Cmm definition, the info table and the entry code. The info
table maps directly StgInfoTable struct and contains various fields related to the type of the closure, its
payload, and references. The code objects are basic blocks of generated code that correspond to the logic
of the Haskell function/constructor.

For the simplest example consider a constant static constructor. Simply a function which yields the
Unit value. In this case the function is simply a constructor with no payload, and is statically allocated.

Lets consider a few examples to develop some intuition about the Cmm layout for simple Haskell
programs.

Haskell:

unit = ()

Cmm:

[section "data" {
unit_closure:

const ()_static_info;
}]

Consider a static constructor with an argument.
Haskell:

con :: Maybe ()
con = Just ()

Cmm:

[section "data" {
con_closure:

const Just_static_info;
const ()_closure+1;
const 1;

}]

Consider a literal constant. This is a static value.
Haskell:

lit :: Int
lit = 1

GHC 430

Cmm:

[section "data" {
lit_closure:

const I#_static_info;
const 1;

}]

Consider the identity function.
Haskell:

id x = x

Cmm:

[section "data" {
id_closure:

const id_info;
},
id_info()

{ label: id_info
rep:HeapRep static { Fun {arity: 1 fun_type: ArgSpec 5} }

}
ch1:

R1 = R2;
jump stg_ap_0_fast; // [R1]

}]

Consider the constant function.
Haskell:

constant x y = x

Cmm:

[section "data" {
constant_closure:

const constant_info;
},
constant_info()

{ label: constant_info

431 GHC

rep:HeapRep static { Fun {arity: 2 fun_type: ArgSpec 12} }
}

cgT:
R1 = R2;
jump stg_ap_0_fast; // [R1]

}]

Consider a function where application of a function (of unknown arity) occurs.
Haskell:

compose f g x = f (g x)

Cmm:

[section "data" {
compose_closure:

const compose_info;
},
compose_info()

{ label: compose_info
rep:HeapRep static { Fun {arity: 3 fun_type: ArgSpec 20} }

}
ch9:

Hp = Hp + 32;
if (Hp > HpLim) goto chd;
I64[Hp - 24] = stg_ap_2_upd_info;
I64[Hp - 8] = R3;
I64[Hp + 0] = R4;
R1 = R2;
R2 = Hp - 24;
jump stg_ap_p_fast; // [R1, R2]

che:
R1 = compose_closure;
jump stg_gc_fun; // [R1, R4, R3, R2]

chd:
HpAlloc = 32;
goto che;

}]

Consider a function which branches using pattern matching:
Haskell:

match :: Either a a -> a
match x = case x of

GHC 432

Left a -> a
Right b -> b

Cmm:

[section "data" {
match_closure:

const match_info;
},
sio_ret()

{ label: sio_info
rep:StackRep []

}
ciL:

_ciM::I64 = R1 & 7;
if (_ciM::I64 >= 2) goto ciN;
R1 = I64[R1 + 7];
Sp = Sp + 8;
jump stg_ap_0_fast; // [R1]

ciN:
R1 = I64[R1 + 6];
Sp = Sp + 8;
jump stg_ap_0_fast; // [R1]

},
match_info()

{ label: match_info
rep:HeapRep static { Fun {arity: 1 fun_type: ArgSpec 5} }

}
ciP:

if (Sp - 8 < SpLim) goto ciR;
R1 = R2;
I64[Sp - 8] = sio_info;
Sp = Sp - 8;
if (R1 & 7 != 0) goto ciU;
jump I64[R1]; // [R1]

ciR:
R1 = match_closure;
jump stg_gc_fun; // [R1, R2]

ciU: jump sio_info; // [R1]
}]

Macros
Cmm itself uses many macros to stand for various constructs, many of which are defined in an external

C header file. A short reference for the common types:

Cmm Description
C_ char
D_ double

433 GHC

Cmm Description
F_ float
W_ word
P_ garbage collected pointer
I_ int
L_ long
FN_ function pointer (no arguments)
EF_ extern function pointer
I8 8-bit integer
I16 16-bit integer
I32 32-bit integer
I64 64-bit integer

Inside of Cmm logic there are several functions which are commonly invoked:

• Sp_adj - Adjusts the stack pointer.
• GET_ENTRY -
• ENTER -
• jump -

stg_init_finish
{
jump StgReturn;

}

stg_init
{
W_ next;
Sp = W_[BaseReg + OFFSET_StgRegTable_rSp];
next = W_[Sp];
Sp_adj(1);
jump next;

}

#define SIZEOF_W 8 /* or 4 depending on platform */
#define WDS(n) ((n)*SIZEOF_W)
#define Sp(n) W_[Sp + WDS(n)]
#define Hp(n) W_[Hp + WDS(n)]
#define Sp_adj(n) Sp = Sp + WDS(n)
#define Hp_adj(n) Hp = Hp + WDS(n)

Many of the predefined closures (stg_ap_p_fast , etc) are themselves mechanically generated and more
or less share the same form (a giant switch statement on closure type, update frame, stack adjustment).
Inside of GHC is a file named GenApply.hs that generates most of these functions. For example the output
for stg_ap_p_fast .

GHC 434

stg_ap_p_fast
{ W_ info;

W_ arity;
if (GETTAG(R1)==1) {

Sp_adj(0);
jump %GET_ENTRY(R1-1) [R1,R2];

}
if (Sp - WDS(2) < SpLim) {

Sp_adj(-2);
W_[Sp+WDS(1)] = R2;
Sp(0) = stg_ap_p_info;
jump __stg_gc_enter_1 [R1];

}
R1 = UNTAG(R1);
info = %GET_STD_INFO(R1);
switch [INVALID_OBJECT .. N_CLOSURE_TYPES] (TO_W_(%INFO_TYPE(info))) {

case FUN,
FUN_1_0,
FUN_0_1,
FUN_2_0,
FUN_1_1,
FUN_0_2,
FUN_STATIC: {
arity = TO_W_(StgFunInfoExtra_arity(%GET_FUN_INFO(R1)));
ASSERT(arity > 0);
if (arity == 1) {

Sp_adj(0);
R1 = R1 + 1;
jump %GET_ENTRY(UNTAG(R1)) [R1,R2];

} else {
Sp_adj(-2);
W_[Sp+WDS(1)] = R2;
if (arity < 8) {

R1 = R1 + arity;
}
BUILD_PAP(1,1,stg_ap_p_info,FUN);

}
}
default: {

Sp_adj(-2);
W_[Sp+WDS(1)] = R2;
jump RET_LBL(stg_ap_p) [];

}
}

}

30.26 Inline CMM
Handwritten Cmm can be included in a module manually by first compiling it through GHC into an object
and then using a special FFI invocation.

435 GHC

#include "Cmm.h"

factorial {
entry:

W_ n ;
W_ acc;
n = R1 ;
acc = n ;
n = n - 1 ;

for:
if (n <= 0) {

return(acc);
} else {

acc = acc * n ;
n = n - 1 ;
goto for ;

}
return(0);

}

-- ghc -c factorial.cmm -o factorial.o
-- ghc factorial.o Example.hs -o Example

{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnliftedFFITypes #-}
{-# LANGUAGE GHCForeignImportPrim #-}
{-# LANGUAGE ForeignFunctionInterface #-}

module Main where

import GHC.Prim
import GHC.Word

foreign import prim "factorial" factorial_cmm :: Word# -> Word#

factorial :: Word64 -> Word64
factorial (W64# n) = W64# (factorial_cmm n)

main :: IO ()
main = print (factorial 5)

30.27 Optimisation

GHC uses a suite of assembly optimisations to generate more optimal code.

GHC 436

Tables Next to Code

GHC will place the info table for a toplevel closure directly next to the entry-code for the objects in
memory such that the fields from the info table can be accessed by pointer arithmetic on the function
pointer to the code itself. Not performing this optimization would involve chasing through one more
pointer to get to the info table. Given how often info-tables are accessed using the tables-next-to-code
optimization results in a tractable speedup.

Pointer Tagging

Depending on the type of the closure involved, GHC will utilize the last few bits in a pointer to the
closure to store information that can be read off from the bits of pointer itself before jumping into or
access the info tables. For thunks this can be information like whether it is evaluated to WHNF or not,
for constructors it contains the constructor tag (if it fits) to avoid an info table lookup.

Depending on the architecture the tag bits are either the last 2 or 3 bits of a pointer.

// 32 bit arch
TAG_BITS = 2

// 64-bit arch
TAG_BITS = 3

These occur in Cmm most frequently via the following macro definitions:

#define TAG_MASK ((1 << TAG_BITS) - 1)
#define UNTAG(p) (p & ~TAG_MASK)
#define GETTAG(p) (p & TAG_MASK)

So for instance in many of the precompiled functions, there will be a test for whether the active closure
R1 is already evaluated.

if (GETTAG(R1)==1) {
Sp_adj(0);
jump %GET_ENTRY(R1-1) [R1,R2];

}

30.28 Interface Files
During compilation GHC will produce interface files for each module that are the binary encoding of
specific symbols (functions, typeclasses, etc) exported by that module as well as any package dependencies
it itself depends on. This is effectively the serialized form of the ModGuts structure used internally in
the compiler. The internal structure of this file can be dumped using the --show-iface flag. The precise
structure changes between versions of GHC.

437 GHC

$ ghc --show-iface let.hi
Magic: Wanted 33214052,

got 33214052
Version: Wanted [7, 0, 8, 4],

got [7, 0, 8, 4]
Way: Wanted [],

got []
interface main:Main 7084
interface hash: 1991c3e0edf3e849aeb53783fb616df2
ABI hash: 0b7173fb01d2226a2e61df72371034ee
export-list hash: 0f26147773230f50ea3b06fe20c9c66c
orphan hash: 693e9af84d3dfcc71e640e005bdc5e2e
flag hash: 9b3dfba8e3209c5b5c132a214b6b9bd3
used TH splices: False
where

exports:
Main.main

module dependencies:
package dependencies: base* ghc-prim integer-gmp
orphans: base:GHC.Base base:GHC.Float base:GHC.Real
family instance modules: base:Data.Either base:Data.Monoid

base:Data.Type.Equality base:GHC.Generics
import -/ base:GHC.Num 5e7786970581cacc802bf850d458a30b
import -/ base:Prelude 74043f272d60acec1777d3461cfe5ef4
import -/ base:System.IO cadd0efb01c47ddd8f52d750739fdbdf
import -/ ghc-prim:GHC.Types dcba736fa3dfba12d307ab18354845d2
4cfa03293a8356d627c0c5fec26936e2
main :: GHC.Types.IO ()

vectorised variables:
vectorised tycons:
vectorised reused tycons:
parallel variables:
parallel tycons:
trusted: safe-inferred
require own pkg trusted: False

30.29 Runtime System
The GHC runtime system is a massive part of the compiler. It comes in at around 70,000 lines of C and
Cmm. There is simply no way to explain most of what occurs in the runtime succinctly. There is more
than three decades worth of work that has gone into making this system and it is quite advanced. Instead
lets look at the basic structure and some core modules.

The golden source of truth for all GHC internals is the GHC Wiki Commentary written by the compiler
maintainers:

https://gitlab.haskell.org/ghc/ghc/wikis/commentary
Inside the GHC source tree the runtime system spans multiple modules. The bulk of the runtime logic

is stored across the includes , utils and rts folders.

ghc-8.8.2
��� compiler

GHC 438

� ��� prelude
� ��� primops.txt.pp # Definitions of primops
��� compiler
��� includes
� ��� rts # Public interface for RTS
� ��� stg # Definitions for STG langauge
��� utils
� ��� genapply # Generates Cmm closure application boilerplate
� ��� genprimopcode # Generates Primop builtin operations for GHC
� ��� deriveConstants # Machine specific information about register and sizes
��� rts
 ��� hooks
 ��� linker
 ��� posix
 ��� sm
 ��� win32

The toplevel for the runtime interface is exposed through six key header files found in the /includes
folder.

includes
��� Cmm.h # Defines Cmm types and macros
��� HsFFI.h # Defines mapping between STG types and Haskell types, and FFI functions
��� MachDeps.h # Defines types of of machine integer types and sizes
��� Rts.h # Declares everything that the GHC RTS exposes externally
��� RtsAPI.h # API for invoking Haskell functions via the RTS
��� STG.h # Toplevel import for all STG types, control flow operations and memory layout

The stg folder contains many of the macros used in the evaluation of STG as well as the memory
layout and mappings from to STG to machine types.

include/stg
��� DLL.h # Support for Windows DLLs
��� HaskellMachRegs.h # Registers used in STG code
��� MachRegs.h # Registers used in STG code
��� MiscClosures.h # Type definitions for layout of STG closures
��� Prim.h # Declarations of primops
��� Regs.h # Registers for STG virtual machine
��� RtsMachRegs.h # Registers for STG virtual machine
��� SMP.h # Declarations for multicore memory operations
��� Ticky.h # Profiling tools
��� Types.h # C Declarations of types used in STG

The storage folder contains format definitions define that define the memory layout of closures, In-
foTables, sparks, etc as they are represented on the heap.

439 GHC

include/rts/storage
��� Block.h # Block structure for the storage manager
��� ClosureMacros.h # Macros for manipulating info tables of closures
��� Closures.h # Type definitions for closures
��� ClosureTypes.h # Definitions for closure metadata (arity, etc)
��� FunTypes.h # Definitions of function argument types
��� GC.h # Type definitions for GC blocks, nursery, generations
��� Heap.h # Introsepction for GHC heap
��� InfoTables.h # Type definitinos for function info tables
��� MBlock.h # Introspection for determining if points are on the GHC heap
��� TSO.h # Thread state objects

Inside the utils folder of the GHC source tree are several utilities that generate Cmm modules that
GHC is compiled against. These are boilerplate modules that define the Cmm macros in terms of the
Haskell datatypes defined in the Stg definitions in the compiler.

• genprimop - Generate the builtin primop definitions.
• genapply - Generate the entry logic for manipulating the stack when entering functions of various

arities.
• deriveConstants - Generates the header files containing constant values (pointer size, word sizes,

etc) of the target platform

For genprimop , the primops are generated from a custom domain specific langauge specified in primops.txt.pp
which defines the primops, their arity, commutative and associvaity properties and the machine types they
operate over. An example for integer addition for (+#) looks like:

primtype Int#

primop IntAddOp "+#" Dyadic
Int# -> Int# -> Int#
with commutable = True

fixity = infixl 6

primop IntSubOp "-#" Dyadic Int# -> Int# -> Int#
with fixity = infixl 6

For genapply this generates all the Cmm definitions in Apply.cmm for manipulating the stack when
evaluating a closure. For example a function of arity 2 (ap) is applied to 2 pointer arguments (pp) we
would jump to stg_ap_stk_pp definition.

stg_ap_stk_pp
{ R3 = W_[Sp+WDS(1)];

R2 = W_[Sp+WDS(0)];
Sp_adj(2);
jump %GET_ENTRY(UNTAG(R1)) [R1,R2,R3];

}

GHC 440

The conventions for these single letters is described by the following datatype in Main.hs of genapply :

data ArgRep
= N -- non-ptr
| P -- ptr
| V -- void
| F -- float
| D -- double
| L -- long (64-bit)
| V16 -- 16-byte (128-bit) vectors
| V32 -- 32-byte (256-bit) vectors
| V64 -- 64-byte (512-bit) vectors

The include/rts folder itself contains all the public header files for all aspects of the runtime. Most
of thes are included in Rts.h toplevel import.

include/rts
��� Adjustor.h # Dynamically allocated code for Haskell closures to be viewed as C function pointers.
��� BlockSignals.h # RTS signal handling
��� Bytecodes.h # Bytecode definitions for GHCi
��� Config.h # Runtime system settings (debug, profiling)
��� Constants.h # Global constants
��� EventLogFormat.h # Event log for profiling
��� EventLogWriter.h # Event log for profiling
��� FileLock.h # Filesystem file locking
��� Flags.h # +RTS flag settings
��� GetTime.h # System clock timers
��� Globals.h # Data.Typeale and GHC.Conc storage utilities
��� Hpc.h # Haskell program coverage hooks
��� IOManager.h # IO event loop
��� Libdw.h # DWARF debugging
��� LibdwPool.h # DWARF debugging
��� Linker.h # Object linker
��� Main.h # Defines hs_main entry point invoked by Main.main
��� Messages.h # Runtime error logging
��� OSThreads.h # Abstraction over operating system thread libraries
��� Parallel.h # Defines newSpark primitive
��� PrimFloat.h # Primitive floating point operations
��� Profiling.h # Cost center profiling
��� Signals.h # RTS signal handling
��� SpinLock.h # Abstraction over system spin locks
��� StableName.h # Interface for GHC.StableName objects
��� StablePtr.h # Interface for GHC.Stable pointers which arent collected by GC
��� StaticPtrTable.h # Declarations for Static Pointer Table
��� Threads.h # Interface for thread scheduler
��� Ticky.h # Profiling counter types
��� Time.h # Time resolution and datatype settings for the runtime
��� Timer.h # Timer for profiling
��� TTY.h # POSIX tty interface
��� Types.h # RTS types, defines StgClosure StgInfoTable and StgTSO
��� Utils.h # Misc utilities

441 GHC

The runtime system folder itself contains several modules which are written in Cmm.

rts
��� Apply.cmm # Application of closures
��� Compact.cmm # Compact regions
��� Exception.cmm # Async exception primitives
��� HeapStackCheck.cmm # Heap and Stack failure checks
��� PrimOps.cmm # Array, MVar, TVar, STM primitives
��� StgMiscClosures.cmm # Entry code for closure types
��� StgStartup.cmm # Code for starting, stopping and restarting threads
��� StgStdThunks.cmm # Introspection and field selection of thunks
��� Updates.cmm # Code up to update thunks, BlackHole handling.

The core library for the garbage collector used in the runtime is stored in the sm subfolder of rts and
contains several implementations of the garbage collectors that Haskell programs can be compiled with.

rts/sm
��� BlockAlloc.c # GC block allocator
��� CNF.c # Compact normal forms, non-GCd structures
��� Compact.c # Compacting garbage collector
��� Evac.c # Generational garbage collector:
��� GC.c # Generational garbage collector
��� MBlock.c # Architecture-dependent functions for allocations
��� NonMoving.c # Low-latency garbage collector
��� NonMovingMark.c # Low-latency garbage collector mark algorithm
��� Sanity.c # Sanity checking for heap and stack
��� Scav.c # Scavenger functions for generational GC
��� Storage.c # GC storage manager
��� Sweep.c # Mark and sweep algorithm for block allocator

The source for the whole runtime in rts contains 50 or so modules. The core units of logic are
described briefly below.

rts
��� Arena.c # Arena datatypes for garbage collector
��� ClosureFlags.c # Definitions for types of closures
��� Disassembler.c # Bytecode interpreter for GHCi
��� Globals.c # Runtime system global variables
��� Hash.c # GHCs hash table implementation
��� Heap.c # GHC heap definition
��� HsFFI.c # Foreign function interface
��� Interpreter.c # Bytecode interpreter for GHCi
��� Linker.c # Object code linker
��� Printer.c # Heap value pretty printer
��� Profiling.c # Entry point for profiling functions
��� RtsAPI.c # API for invoking Haskell functions via the RTS
��� RtsMain.c # Entry point for runtime system
��� RtsStartup.c # Main function for a standalone Haskell program.

GHC 442

��� RtsSymbolInfo.c # RTS symbol table handling
��� RtsSymbols.c # RTS symbol definitions
��� Schedule.c # Thread scheduler
��� Sparks.c # Spark pools for parallel runtime
��� StgCRun.c # Entry point for running STG functions from C
��� STM.c # Software transactional memory
��� Task.c # Task managerw for parallel runtime
��� Threads.c # Core thread types and spawning functions
��� TopHandler.c # RTS main thread handler
��� Weak.c # Handling of weak pointers and finalisation logic
��� WSDeque.c # Work-stealing deque data structure for parallel runtime

The runtime system itself also has three different modes/ways of operation.

• Vanilla - Runtime without additional settings. Single threaded.
• Threaded - Runtime linked using the -threaded option.
• Profiling - Runtime linked using the -prof option.

The specific flags can be checked by passing +RTS --info to a compiled binary.

[("GHC RTS", "YES")
,("GHC version", "8.6.5")
,("RTS way", "rts_v")
,("Build platform", "x86_64-unknown-linux")
,("Build architecture", "x86_64")
,("Build OS", "linux")
,("Build vendor", "unknown")
,("Host platform", "x86_64-unknown-linux")
,("Host architecture", "x86_64")
,("Host OS", "linux")
,("Host vendor", "unknown")
,("Target platform", "x86_64-unknown-linux")
,("Target architecture", "x86_64")
,("Target OS", "linux")
,("Target vendor", "unknown")
,("Word size", "64")
,("Compiler unregisterised", "NO")
,("Tables next to code", "YES")
]

The state of the runtime can also be queried at runtime for statistics about the heap, garbage collector
and wall time. The getRTSStats generates two datatypes with all the queryable information contained in
RTSStats and GCDetails .

import GHC.Stats
getRTSStats :: IO RTSStats

Chapter 31

Profiling

31.1 Criterion
Criterion is a statistically aware benchmarking tool. It exposes a library which allows us to benchmark
individual functions over and over and test the distribution of timings for aberrant beahvior and stability.
These kind of tests are quite common to include in libraries which need to test that the introduction of
new logic doesn’t result in performance regressions.

Criterion operates largely with the following four functions.

whnf :: (a -> b) -> a -> Pure
nf :: NFData b => (a -> b) -> a -> Pure
nfIO :: NFData a => IO a -> IO ()
bench :: Benchmarkable b => String -> b -> Benchmark

The whnf function evaluates a function applied to an argument a to weak head normal form, while
nf evaluates a function applied to an argument a deeply to normal form. See Laziness.

The bench function samples a function over and over according to a configuration to develop a statis-
tical distribution of its runtime.

import Criterion.Main

-- Naive recursion for fibonacci numbers.
fib1 :: Int -> Int
fib1 0 = 0
fib1 1 = 1
fib1 n = fib1 (n -1) + fib1 (n -2)

-- Use the De Moivre closed form for fibonacci numbers.
fib2 :: Int -> Int
fib2 x = truncate $ (1 / sqrt 5) * (phi ^ x - psi ^ x)
where
phi = (1 + sqrt 5) / 2
psi = (1 - sqrt 5) / 2

suite :: [Benchmark]
suite =

443

PROFILING 444

[bgroup
"naive"
[bench "fib 10" $ whnf fib1 5,

bench "fib 20" $ whnf fib1 10
],

bgroup
"de moivre"
[bench "fib 10" $ whnf fib2 5,

bench "fib 20" $ whnf fib2 10
]

]

main :: IO ()
main = defaultMain suite

These criterion reports can be generated out to either CSV or to an HTML file output with plots of
the data.

$ runhaskell criterion.hs
warming up
estimating clock resolution...
mean is 2.349801 us (320001 iterations)
found 1788 outliers among 319999 samples (0.6%)
1373 (0.4%) high severe

estimating cost of a clock call...
mean is 65.52118 ns (23 iterations)
found 1 outliers among 23 samples (4.3%)
1 (4.3%) high severe

benchmarking de moivre/fib 20
mean: 8.082639 us, lb 8.018560 us, ub 8.350159 us, ci 0.950
std dev: 595.2161 ns, lb 77.46251 ns, ub 1.408784 us, ci 0.950
found 8 outliers among 100 samples (8.0%)
4 (4.0%) high mild
4 (4.0%) high severe

variance introduced by outliers: 67.628%
variance is severely inflated by outliers

To generate an HTML page containing the benchmark results plotted

$ ghc -O2 --make criterion.hs
$./criterion -o bench.html

445 PROFILING

31.2 EKG
EKG is a monitoring tool that can monitor various aspect of GHC’s runtime alongside an active process.
The interface for the output is viewable within a browser interface. The monitoring process is forked off
(in a system thread) from the main process.

{-# Language OverloadedStrings #-}

import Control.Monad
import System.Remote.Monitoring

main :: IO ()
main = do
ekg <- forkServer "localhost" 8000
putStrLn "Started server on http://localhost:8000"
forever $ getLine >>= putStrLn

31.3 RTS Profiling
The GHC runtime system can be asked to dump information about allocations and percentage of wall
time spent in various portions of the runtime system.

$./program +RTS -s

1,939,784 bytes allocated in the heap
11,160 bytes copied during GC
44,416 bytes maximum residency (2 sample(s))
21,120 bytes maximum slop

1 MB total memory in use (0 MB lost due to fragmentation)

PROFILING 446

Tot time (elapsed) Avg pause Max pause
Gen 0 2 colls, 0 par 0.00s 0.00s 0.0000s 0.0000s
Gen 1 2 colls, 0 par 0.00s 0.00s 0.0002s 0.0003s

INIT time 0.00s (0.00s elapsed)
MUT time 0.00s (0.01s elapsed)
GC time 0.00s (0.00s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 0.01s (0.01s elapsed)

%GC time 5.0% (7.1% elapsed)

Alloc rate 398,112,898 bytes per MUT second

Productivity 91.4% of total user, 128.8% of total elapsed

Productivity indicates the amount of time spent during execution compared to the time spent garbage
collecting. Well tuned CPU bound programs are often in the 90-99% range of productivity range.

In addition individual function profiling information can be generated by compiling the program with
-prof flag. The resulting information is outputted to a .prof file of the same name as the module. This

is useful for tracking down hotspots in the program.

$ ghc -O2 program.hs -prof -auto-all
$./program +RTS -p
$ cat program.prof

Mon Oct 27 23:00 2014 Time and Allocation Profiling Report (Final)

program +RTS -p -RTS

total time = 0.01 secs (7 ticks @ 1000 us, 1 processor)
total alloc = 1,937,336 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

CAF Main 100.0 97.2
CAF GHC.IO.Handle.FD 0.0 1.8

individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 42 0 0.0 0.7 100.0 100.0
CAF Main 83 0 100.0 97.2 100.0 97.2
CAF GHC.IO.Encoding 78 0 0.0 0.1 0.0 0.1
CAF GHC.IO.Handle.FD 77 0 0.0 1.8 0.0 1.8
CAF GHC.Conc.Signal 74 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 69 0 0.0 0.0 0.0 0.0
CAF GHC.Show 60 0 0.0 0.0 0.0 0.0

Chapter 32

Compilers

Haskell is widely regarded as being a best in class for the construction of compilers and there are many
examples of programming languages that were bootstrapped on Haskell.

Compiler development largely consists of a process of transforming one graph representation of a
program or abstract syntax tree into simpler graph representations while preserving the semantics of the
languages. Many of these operations can be written quite concisely using Haskell’s pattern matching
machinery.

Haskell itself also has a rich academic tradition and an enormous number of academic papers will use
Haskell as the implementation language used to describe a typechecker, parser or other novel compiler
idea.

In addition the Hackage ecosystem has a wide variety of modules that many individuals have abstracted
out of their own compilers into reusable components. These are broadly divided into several categories:

• Binder libraries - Libraries for manipulating lambda calculus terms and perform capture-avoiding
substitution, alpha renaming and beta reduction.

• Name generation - Generation of fresh names for use in compiler passes which need to generates
names which don’t clash with each other.

• Code Generators - Libraries for emitting LLVM or other assembly representations at the end of
the compiler.

• Source Generators - Libraries for emitting textual syntax of another language used for doing
source-to-source translations.

• Graph Analysis - Libraries for doing control flow analysis.
• Pretty Printers - Libraries for turning abstract syntax trees into textual forms.
• Parser Generators - Libraries for generating parsers and lexers from higher-level syntax descrip-

tions.
• Traversal Utilities - Libraries for writing traversal and rewrite systems across AST types.
• REPL Generators - Libraries fo building command line interfaces for Read-Eval-Print loops.

32.1 Unbound
Several libraries exist to mechanize the process of writing name capture and substitution, since it is largely
mechanical. Probably the most robust is the unbound library. For example we can implement the infer
function for a small Hindley-Milner system over a simple typed lambda calculus without having to write
the name capture and substitution mechanics ourselves.

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

447

COMPILERS 448

{-# LANGUAGE OverloadedStrings #-}

module Infer where

import Data.String
import Data.Map (Map)
import Control.Monad.Error
import qualified Data.Map as Map

import qualified Unbound.LocallyNameless as NL
import Unbound.LocallyNameless hiding (Subst, compose)

data Type
= TVar (Name Type)
| TArr Type Type
deriving (Show)

data Expr
= Var (Name Expr)
| Lam (Bind (Name Expr) Expr)
| App Expr Expr
| Let (Bind (Name Expr) Expr)
deriving (Show)

$(derive [''Type, ''Expr])

instance IsString Expr where
fromString = Var . fromString

instance IsString Type where
fromString = TVar . fromString

instance IsString (Name Expr) where
fromString = string2Name

instance IsString (Name Type) where
fromString = string2Name

instance Eq Type where
(==) = eqType

eqType :: Type -> Type -> Bool
eqType (TVar v1) (TVar v2) = v1 == v2
eqType _ _ = False

uvar :: String -> Expr
uvar x = Var (s2n x)

tvar :: String -> Type
tvar x = TVar (s2n x)

instance Alpha Type
instance Alpha Expr

instance NL.Subst Type Type where

449 COMPILERS

isvar (TVar v) = Just (SubstName v)
isvar _ = Nothing

instance NL.Subst Expr Expr where
isvar (Var v) = Just (SubstName v)
isvar _ = Nothing

instance NL.Subst Expr Type where

data TypeError
= UnboundVariable (Name Expr)
| GenericTypeError
deriving (Show)

instance Error TypeError where
noMsg = GenericTypeError

type Env = Map (Name Expr) Type
type Constraint = (Type, Type)
type Infer = ErrorT TypeError FreshM

empty :: Env
empty = Map.empty

freshtv :: Infer Type
freshtv = do
x <- fresh "_t"
return $ TVar x

infer :: Env -> Expr -> Infer (Type, [Constraint])
infer env expr = case expr of

Lam b -> do
(n,e) <- unbind b
tv <- freshtv
let env' = Map.insert n tv env
(t, cs) <- infer env' e
return (TArr tv t, cs)

App e1 e2 -> do
(t1, cs1) <- infer env e1
(t2, cs2) <- infer env e2
tv <- freshtv
return (tv, (t1, TArr t2 tv) : cs1 ++ cs2)

Var n -> do
case Map.lookup n env of

Nothing -> throwError $ UnboundVariable n
Just t -> return (t, [])

Let b -> do

COMPILERS 450

(n, e) <- unbind b
(tBody, csBody) <- infer env e
let env' = Map.insert n tBody env
(t, cs) <- infer env' e
return (t, cs ++ csBody)

32.2 Unbound Generics
Recently unbound was ported to use GHC.Generics instead of Template Haskell. The API is effectively
the same, so for example a simple lambda calculus could be written as:

{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE ScopedTypeVariables #-}

module LC where

import Unbound.Generics.LocallyNameless
import Unbound.Generics.LocallyNameless.Internal.Fold (toListOf)

import GHC.Generics

import Data.Typeable (Typeable)
import Data.Set as S

import Control.Monad.Reader (Reader, runReader)

data Exp
= Var (Name Exp)
| Lam (Bind (Name Exp) Exp)
| App Exp Exp
deriving (Show, Generic, Typeable)

instance Alpha Exp

instance Subst Exp Exp where
isvar (Var x) = Just (SubstName x)
isvar _ = Nothing

fvSet :: (Alpha a, Typeable b) => a -> S.Set (Name b)
fvSet = S.fromList . toListOf fv

type M a = FreshM a

(=~) :: Exp -> Exp -> M Bool
e1 =~ e2 | e1 `aeq` e2 = return True
e1 =~ e2 = do

451 COMPILERS

e1' <- red e1
e2' <- red e2
if e1' `aeq` e1 && e2' `aeq` e2

then return False
else e1' =~ e2'

-- Reduction
red :: Exp -> M Exp
red (App e1 e2) = do
e1' <- red e1
e2' <- red e2
case e1' of
Lam bnd -> do

(x, e1'') <- unbind bnd
return $ subst x e2' e1''

otherwise -> return $ App e1' e2'
red (Lam bnd) = do

(x, e) <- unbind bnd
e' <- red e
case e of
App e1 (Var y) | y == x && x `S.notMember` fvSet e1 -> return e1
otherwise -> return (Lam (bind x e'))

red (Var x) = return $ (Var x)

x :: Name Exp
x = string2Name "x"

y :: Name Exp
y = string2Name "y"

z :: Name Exp
z = string2Name "z"

s :: Name Exp
s = string2Name "s"

lam :: Name Exp -> Exp -> Exp
lam x y = Lam (bind x y)

zero = lam s (lam z (Var z))
one = lam s (lam z (App (Var s) (Var z)))
two = lam s (lam z (App (Var s) (App (Var s) (Var z))))
three = lam s (lam z (App (Var s) (App (Var s) (App (Var s) (Var z)))))

plus = lam x (lam y (lam s (lam z (App (App (Var x) (Var s)) (App (App (Var y) (Var s)) (Var z))))))

true = lam x (lam y (Var x))
false = lam x (lam y (Var y))
if_ x y z = (App (App x y) z)

main :: IO ()
main = do

COMPILERS 452

print $ lam x (Var x) `aeq` lam y (Var y)
print $ not (lam x (Var y) `aeq` lam x (Var x))
print $ lam x (App (lam y (Var x)) (lam y (Var y))) =~ (lam y (Var y))
print $ lam x (App (Var y) (Var x)) =~ Var y
print $ if_ true (Var x) (Var y) =~ Var x
print $ if_ false (Var x) (Var y) =~ Var y
print $ App (App plus one) two =~ three

See:

• unbound-generics

32.3 Pretty Printers
Pretty is the first Wadler-Leijen style combinator library, it exposes a simple set of primitives to print
Haskell datatypes to legacy strings programmatically. You probably don’t want to use this library but it
inspired most of the ones that followed after. There are many many many pretty printing libraries for
Haskell.

Wadler-Leijen Style

• pretty
• wl-pprint
• wl-pprint-text
• wl-pprint-ansiterm
• wl-pprint-terminfo
• wl-pprint-annotated
• wl-pprint-console
• ansi-pretty
• ansi-terminal
• ansi-wl-pprint

Modern

• prettyprinter
• prettyprinter-ansi-terminal
• prettyprinter-compat-annotated-wl-pprint
• prettyprinter-compat-ansi-wl-pprint
• prettyprinter-compat-wl-pprint
• prettyprinter-convert-ansi-wl-pprint

Specialised

• layout
• aeson-pretty

These days it is best to avoid the pretty printer and use the standard prettyprinter library which
subsumes most of the features of these previous libraries under one modern uniform API.

32.4 prettyprinter
Pretty printer is a printer combinator library which allows us to write typeclasses over datatypes to render
them to strings with arbitrary formatting. These kind of libraries show up everywhere where the default
Show instance is insufficient for rendering.

https://github.com/lambdageek/unbound-generics

453 COMPILERS

The base interface to these libraries is exposed as a Pretty class which monoidally composes a variety
of documents together. The Monoid append operation simply concatenates two documents while a variety
of higher level combinators add additional string elements into the language.

The Pretty class maps an arbitrary value into a Doc type which is annotated with the renderer.

data Doc ann

class Pretty a where
pretty :: a -> Doc ann
prettyList :: [a] -> Doc ann

The Doc type can then be rendered to any number of strings type means of a layout algorithm. The
builtin methods are Compact , Smart and Pretty .

viaShow :: Show a => a -> Doc ann
layoutPretty :: LayoutOptions -> Doc ann -> SimpleDocStream ann
renderStrict :: SimpleDocStream ann -> Text
putDoc :: Doc ann -> IO ()

The common combinators are shown below,

Combinator Description
<> Concatenation
<+> Spaced concatenation
nest Nested a document with whitespace
group Lays out on a line by removing line breaks
align Lays out with the nesting level at the current column
hang Lays out with the nesting level relative to the first line
indent Increases indentation by a given count
list Lays out a given list with braces and commas.
tupled Lays out a given list with parens and commas.
hsep Concatenates list of docs horizontally with a separator
hcat Concatenates list of docs horizontally
vcat Concatenates list of docs vertically
puncutate Appends a given doc to all elements of a list of docs
parens Surrounds with parentheses
dquotes Surrounds with double quotes

For example the common pretty printed form of the lambda calculus k combinator is:

\f g x . (f (g x))

The prettyprinter library can be used to pretty print nested data structures in a more human readable
form for any type that implements Show . For example a dump of the structure for the AST of SK
combinator with ppShow .

COMPILERS 454

App
(Lam

"f" (Lam "g" (Lam "x" (App (Var "f") (App (Var "g") (Var "x"))))))
(Lam "x" (Lam "y" (Var "x")))

A full example of pretty printing the lambda calculus is shown below. This uses a custom Pretty class
to pass an integral value which indicates the depth of the lambda expression. Alternatively the builtin
Pretty class could be used for simpler datatypes.

{-# LANGUAGE FlexibleInstances #-}

import Data.Text.Prettyprint.Doc hiding (Pretty)
import Data.Text.Prettyprint.Doc.Render.Terminal

parensIf :: Bool -> Doc a -> Doc a
parensIf True = parens
parensIf False = id

type Name = String

data Expr
= Var String
| Lit Ground
| App Expr Expr
| Lam Name Expr
deriving (Eq, Show)

data Ground
= LInt Int
| LBool Bool
deriving (Show, Eq, Ord)

class Pretty p where
ppr :: Int -> p -> Doc AnsiStyle

instance Pretty String where
ppr _ = pretty

instance Pretty (Doc AnsiStyle) where
ppr _ = id

instance Pretty Expr where
ppr _ (Var x) = pretty x
ppr _ (Lit (LInt a)) = pretty (show a)
ppr _ (Lit (LBool b)) = pretty (show b)
ppr p e@(App _ _) =

let (f, xs) = viewApp e
in let args = sep $ map (ppr (p + 1)) xs

in parensIf (p > 0) $ ppr p f <+> args
ppr p e@(Lam _ _) =

455 COMPILERS

let body = ppr (p + 1) (viewBody e)
in let vars = map (ppr 0) (viewVars e)

in parensIf (p > 0) $ pretty '\\' <> hsep vars <+> pretty "." <+> body

viewVars :: Expr -> [Name]
viewVars (Lam n a) = n : viewVars a
viewVars _ = []

viewBody :: Expr -> Expr
viewBody (Lam _ a) = viewBody a
viewBody x = x

viewApp :: Expr -> (Expr, [Expr])
viewApp (App e1 e2) = go e1 [e2]
where
go (App a b) xs = go a (b : xs)
go f xs = (f, xs)

ppexpr :: Expr -> IO ()
ppexpr = render . ppr 0

render :: Pretty a => a -> IO ()
render a = putDoc (ppr 0 a)

s , k, example :: Expr
s = Lam "f" (Lam "g" (Lam "x" (App (Var "f") (App (Var "g") (Var "x")))))
k = Lam "x" (Lam "y" (Var "x"))
example = App s k

main :: IO ()
main = render s

32.5 pretty-simple
pretty-simple is a Haskell library that renders Show instances in a prettier way. It exposes functions which
are drop in replacements for show and print.

pPrint :: (MonadIO m, Show a) => a -> m ()
pShow :: Show a => a -> Text
pPrintNoColor :: (MonadIO m, Show a) => a -> m ()

A simple example is shown below.

import Text.Pretty.Simple

main :: IO ()
main = do

COMPILERS 456

pPrint [1 .. 25]
pPrint [Just (1, "hello")]

Pretty-simple can be used as the default GHCi printer as shown in the .ghci.conf section.

32.6 Haskeline
Haskeline is a Haskell library exposing cross-platform readline. It provides a monad which can take user
input from the command line and allow the user to edit and go back forth on a line of input as well simple
tab completion.

data InputT m a

runInputT :: Settings IO -> InputT IO a -> IO a
getInputLine :: String -> InputT IO (Maybe String)
outputStrLn :: MonadIO m => String -> InputT m ()

A simple example of usage is shown below:

import Control.Monad.Trans
import System.Console.Haskeline

type Repl a = InputT IO a

process :: String -> IO ()
process = putStrLn

repl :: Repl ()
repl = do

minput <- getInputLine "Repl> "
case minput of

Nothing -> outputStrLn "Goodbye."
Just input -> (liftIO $ process input) >> repl

main :: IO ()
main = runInputT defaultSettings repl

32.7 Repline
Certain sets of tasks in building command line REPL interfaces are so common that is becomes useful to
abstract them out into a library. While haskeline provides a sensible lower-level API for interfacing with
GNU readline, it is somewhat tedious to implement tab completion logic and common command logic over
and over. To that end Repline assists in building interactive shells that resemble GHCi’s default behavior.

457 COMPILERS

module Main where

import Control.Monad.Trans
import Data.List (isPrefixOf)
import System.Console.Repline
import System.Process (callCommand)

type Repl a = HaskelineT IO a

-- Evaluation : handle each line user inputs
cmd :: String -> Repl ()
cmd input = liftIO $ print input

-- Tab Completion: return a completion for partial words entered
completer :: Monad m => WordCompleter m
completer n = do
let names = ["kirk", "spock", "mccoy"]
return $ filter (isPrefixOf n) names

-- Commands
help :: [String] -> Repl ()
help args = liftIO $ print $ "Help: " ++ show args

say :: [String] -> Repl ()
say args = do
_ <- liftIO $ callCommand $ "cowsay" ++ " " ++ (unwords args)
return ()

options :: [(String, [String] -> Repl ())]
options =
[("help", help), -- :help
("say", say) -- :say

]

ini :: Repl ()
ini = liftIO $ putStrLn "Welcome!"

repl :: IO ()
repl = evalRepl (pure ">>> ") cmd options Nothing (Word completer) ini

main :: IO ()
main = repl

Trying it out. (<TAB> indicates a user keypress)

$ cabal run simple
Welcome!
>>> <TAB>
kirk spock mccoy

COMPILERS 458

>>> k<TAB>
kirk

>>> spam
"spam"

>>> :say Hello Haskell

< Hello Haskell >

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

See:

• repline

32.8 LLVM
Haskell has a rich set of LLVM bindings that can generate LLVM and JIT dynamic code from inside of
the Haskell runtime. This is especially useful for building custom programming languages and compilers
which need native performance. The llvm-hs library is the de-facto standard for compiler construction in
Haskell.

We can link effectively to the LLVM bindings which provide an efficient JIT which can generate fast
code from runtime. These can serve as the backend to an interpreter, generating fast SIMD operations
for linear algebra, or compiling dataflow representations of neural networks into code as fast as C from
dynamic descriptions of logic in Haskell.

The llvm-hs library is split across two modules:

• llvm-hs-pure - Pure Haskell datatypes
• llvm-hs - Bindings to C++ framework for optimisation and JIT

The llvm-hs bindings allow us to construct LLVM abstract syntax tree by manipulating a variety of
Haskell datatypes. These datatypes all can be serialised to the C++ bindings to construct the LLVM
module’s syntax tree.

import Control.Monad.Except
import Data.ByteString.Char8 as BS
import LLVM.AST
import qualified LLVM.AST as AST
import LLVM.AST.Global
import LLVM.Context
import LLVM.Module

int :: Type
int = IntegerType 32

defAdd :: Definition

https://github.com/sdiehl/repline

459 COMPILERS

defAdd =
GlobalDefinition
functionDefaults

{ name = Name "add",
parameters =
([Parameter int (Name "a") [],

Parameter int (Name "b") []
],
False

),
returnType = int,
basicBlocks = [body]

}
where
body =

BasicBlock
(Name "entry")
[Name "result"

:= Add
False -- no signed wrap
False -- no unsigned wrap
(LocalReference int (Name "a"))
(LocalReference int (Name "b"))
[]

]
(Do $ Ret (Just (LocalReference int (Name "result"))) [])

module_ :: AST.Module
module_ =
defaultModule
{ moduleName = "basic",

moduleDefinitions = [defAdd]
}

toLLVM :: AST.Module -> IO ()
toLLVM mod = withContext $ \ctx -> do
llvm <- withModuleFromAST ctx mod moduleLLVMAssembly
BS.putStrLn llvm

main :: IO ()
main = toLLVM module_

This will generate the following LLVM module which can be pretty printed out:

; ModuleID = 'basic'
source_filename = "<string>"

define i32 @add(i32 %a, i32 %b) {
entry:
%result = add i32 %a, %b
ret i32 %result

COMPILERS 460

}

An alternative interface uses an IRBuilder monad which interactively constructs up the LLVM AST
using monadic combinators.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RecursiveDo #-}

module Main where

import Data.Text.Lazy.IO as T
import LLVM.AST hiding (function)
import qualified LLVM.AST.Constant as C
import qualified LLVM.AST.Float as F
import qualified LLVM.AST.IntegerPredicate as P
import LLVM.AST.Type as AST
import LLVM.IRBuilder.Instruction
import LLVM.IRBuilder.Module
import LLVM.IRBuilder.Monad

simple :: Module
simple = buildModule "exampleModule" $ mdo
function "f" [(AST.i32, "a")] AST.i32 $ \[a] -> mdo

_entry <- block `named` "entry"
cond <- icmp P.EQ a (ConstantOperand (C.Int 32 0))
condBr cond ifThen ifElse
ifThen <- block
trVal <- add a (ConstantOperand (C.Int 32 0))
br ifExit
ifElse <- block `named` "if.else"
flVal <- add a (ConstantOperand (C.Int 32 0))
br ifExit
ifExit <- block `named` "if.exit"
r <- phi [(trVal, ifThen), (flVal, ifElse)]
ret r

function "plus" [(AST.i32, "x"), (AST.i32, "y")] AST.i32 $ \[x, y] -> do
_entry <- block `named` "entry2"
r <- add x y
ret r

main :: IO ()
main = print simple

See:

• llvm-hs
• llvm-hs-pure
• llvm-hs-examples
• Kaleidoscope Tutorial
• llvm-hs Github

https://hackage.haskell.org/package/llvm-hs
https://hackage.haskell.org/package/llvm-hs-pure
https://github.com/llvm-hs/llvm-hs-examples
http://www.stephendiehl.com/llvm
https://github.com/llvm-hs

Chapter 33

Template Haskell

33.1 Metaprogramming
Template Haskell is a very powerful set of abstractions, some might say too powerful. It effectively allows
us to run arbitrary code at compile-time to generate other Haskell code. You can some absolutely crazy
things, like going off and reading from the filesystem or doing network calls that informs how your code
compiles leading to non-deterministic builds.

While in some extreme cases TH is useful, some discretion is required when using this in production
setting. TemplateHaskell can cause your build times to grow without bound, force you to manually sort
all definitions your modules, and generally produce unmaintainable code. If you find yourself falling back
on metaprogramming ask yourself, what in my abstractions has failed me such that my only option is to
write code that writes code.

Consideration should be used before enabling TemplateHaskell. Consider an idiomatic solution first.

33.2 Quasiquotation
Quasiquotation allows us to express “quoted” blocks of syntax that need not necessarily be the syntax of
the host language, but unlike just writing a giant string it is instead parsed into some AST datatype in
the host language. Notably values from the host languages can be injected into the custom language via
user-definable logic allowing information to flow between the two languages.

In practice quasiquotation can be used to implement custom domain specific languages or integrate
with other general languages entirely via code-generation.

We’ve already seen how to write a Parsec parser, now let’s write a quasiquoter for it.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

module Quasiquote where

import Language.Haskell.TH
import Language.Haskell.TH.Syntax
import Language.Haskell.TH.Quote

import Text.Parsec
import Text.Parsec.String (Parser)
import Text.Parsec.Language (emptyDef)

import qualified Text.Parsec.Expr as Ex

461

TEMPLATE HASKELL 462

import qualified Text.Parsec.Token as Tok

import Control.Monad.Identity

data Expr
= Tr
| Fl
| Zero
| Succ Expr
| Pred Expr
deriving (Eq, Show)

instance Lift Expr where
lift Tr = [| Tr |]
lift Fl = [| Tr |]
lift Zero = [| Zero |]
lift (Succ a) = [| Succ a |]
lift (Pred a) = [| Pred a |]

type Op = Ex.Operator String () Identity

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser emptyDef

parens :: Parser a -> Parser a
parens = Tok.parens lexer

reserved :: String -> Parser ()
reserved = Tok.reserved lexer

semiSep :: Parser a -> Parser [a]
semiSep = Tok.semiSep lexer

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

prefixOp :: String -> (a -> a) -> Op a
prefixOp x f = Ex.Prefix (reservedOp x >> return f)

table :: [[Op Expr]]
table = [

[prefixOp "succ" Succ
, prefixOp "pred" Pred
]

]

expr :: Parser Expr
expr = Ex.buildExpressionParser table factor

true, false, zero :: Parser Expr
true = reserved "true" >> return Tr
false = reserved "false" >> return Fl
zero = reservedOp "0" >> return Zero

463 TEMPLATE HASKELL

factor :: Parser Expr
factor =

true
<|> false
<|> zero
<|> parens expr

contents :: Parser a -> Parser a
contents p = do
Tok.whiteSpace lexer
r <- p
eof
return r

toplevel :: Parser [Expr]
toplevel = semiSep expr

parseExpr :: String -> Either ParseError Expr
parseExpr s = parse (contents expr) "<stdin>" s

parseToplevel :: String -> Either ParseError [Expr]
parseToplevel s = parse (contents toplevel) "<stdin>" s

calcExpr :: String -> Q Exp
calcExpr str = do
filename <- loc_filename `fmap` location
case parse (contents expr) filename str of
Left err -> error (show err)
Right tag -> [| tag |]

calc :: QuasiQuoter
calc = QuasiQuoter calcExpr err err err
where err = error "Only defined for values"

Testing it out:

{-# LANGUAGE QuasiQuotes #-}

import Quasiquote

a :: Expr
a = [calc|true|]
-- Tr

b :: Expr
b = [calc|succ (succ 0)|]
-- Succ (Succ Zero)

c :: Expr
c = [calc|pred (succ 0)|]
-- Pred (Succ Zero)

TEMPLATE HASKELL 464

One extremely important feature is the ability to preserve position information so that errors in the
embedded language can be traced back to the line of the host syntax.

33.3 language-c-quote
Of course since we can provide an arbitrary parser for the quoted expression, one might consider embedding
the AST of another language entirely. For example C or CUDA C.

hello :: String -> C.Func
hello msg = [cfun|

int main(int argc, const char *argv[])
{

printf($msg);
return 0;

}

|]

Evaluating this we get back an AST representation of the quoted C program which we can manipulate
or print back out to textual C code using ppr function.

Func
(DeclSpec [] [] (Tint Nothing))
(Id "main")
DeclRoot
(Params

[Param (Just (Id "argc")) (DeclSpec [] [] (Tint Nothing)) DeclRoot
, Param

(Just (Id "argv"))
(DeclSpec [] [Tconst] (Tchar Nothing))
(Array [] NoArraySize (Ptr [] DeclRoot))

]
False)

[BlockStm
(Exp

(Just
(FnCall

(Var (Id "printf"))
[Const (StringConst ["\"Hello Haskell!\""] "Hello Haskell!")
])))

, BlockStm (Return (Just (Const (IntConst "0" Signed 0))))
]

In this example we just spliced in the anti-quoted Haskell string in the printf statement, but we can
pass many other values to and from the quoted expressions including identifiers, numbers, and other
quoted expressions which implement the Lift type class.

465 TEMPLATE HASKELL

33.4 GPU Kernels
For example now if we wanted programmatically generate the source for a CUDA kernel to run on a GPU
we can switch over the CUDA C dialect to emit the C code.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

import qualified Language.C.Quote.CUDA as Cuda
import qualified Language.C.Syntax as C
import Text.PrettyPrint.Mainland
import Text.PrettyPrint.Mainland.Class (Pretty (..))

cuda_fun :: String -> Int -> Float -> C.Func
cuda_fun fn n a =
[Cuda.cfun|

__global__ void $id:fn (float *x, float *y) {
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i<$n) { y[i] = $a*x[i] + y[i]; }

}

|]

cuda_driver :: String -> Int -> C.Func
cuda_driver fn n =
[Cuda.cfun|

void driver (float *x, float *y) {
float *d_x, *d_y;

cudaMalloc(&d_x, $n*sizeof(float));
cudaMalloc(&d_y, $n*sizeof(float));

cudaMemcpy(d_x, x, $n, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, $n, cudaMemcpyHostToDevice);

$id:fn<<<($n+255)/256, 256>>>(d_x, d_y);

cudaFree(d_x);
cudaFree(d_y);
return 0;

}

|]

makeKernel :: String -> Float -> Int -> [C.Func]
makeKernel fn a n =
[cuda_fun fn n a,
cuda_driver fn n

]

main :: IO ()

TEMPLATE HASKELL 466

main = do
let ker = makeKernel "saxpy" 2 65536
mapM_ (putDocLn . ppr) ker

Running this we generate:

__global__ void saxpy(float* x, float* y)
{

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < 65536) {
y[i] = 2.0 * x[i] + y[i];

}
}
int driver(float* x, float* y)
{

float* d_x, * d_y;

cudaMalloc(&d_x, 65536 * sizeof(float));
cudaMalloc(&d_y, 65536 * sizeof(float));
cudaMemcpy(d_x, x, 65536, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, 65536, cudaMemcpyHostToDevice);
saxpy<<<(65536 + 255) / 256, 256>>>(d_x, d_y);
return 0;

}

Pipe the resulting output through NVidia CUDA Compiler with nvcc -ptx -c to get the PTX associ-
ated with the outputted code.

33.5 Template Haskell
Of course the most useful case of quasiquotation is the ability to procedurally generate Haskell code itself
from inside of Haskell. The template-haskell framework provides four entry points for the quotation to
generate various types of Haskell declarations and expressions.

Type Quasiquoted Class
Q Exp [e| ... |] expression
Q Pat [p| ... |] pattern
Q Type [t| ... |] type
Q [Dec] [d| ... |] declaration

data QuasiQuoter = QuasiQuoter
{ quoteExp :: String -> Q Exp
, quotePat :: String -> Q Pat
, quoteType :: String -> Q Type
, quoteDec :: String -> Q [Dec]
}

467 TEMPLATE HASKELL

The logic evaluating, splicing, and introspecting compile-time values is embedded within the Q monad,
which has a runQ which can be used to evaluate its context. These functions of this monad is deeply
embedded in the implementation of GHC.

runQ :: Quasi m => Q a -> m a
runIO :: IO a -> Q a

Just as before, TemplateHaskell provides the ability to lift Haskell values into the their AST quantities
within the quoted expression using the Lift type class.

class Lift t where
lift :: t -> Q Exp

instance Lift Integer where
lift x = return (LitE (IntegerL x))

instance Lift Int where
lift x= return (LitE (IntegerL (fromIntegral x)))

instance Lift Char where
lift x = return (LitE (CharL x))

instance Lift Bool where
lift True = return (ConE trueName)
lift False = return (ConE falseName)

instance Lift a => Lift (Maybe a) where
lift Nothing = return (ConE nothingName)
lift (Just x) = liftM (ConE justName `AppE`) (lift x)

instance Lift a => Lift [a] where
lift xs = do { xs' <- mapM lift xs; return (ListE xs') }

In many cases Template Haskell can be used interactively to explore the AST form of various Haskell
syntax.

�: runQ [e| \x -> x |]
LamE [VarP x_2] (VarE x_2)

�: runQ [d| data Nat = Z | S Nat |]
[DataD [] Nat_0 [] [NormalC Z_2 [],NormalC S_1 [(NotStrict,ConT Nat_0)]] []]

�: runQ [p| S (S Z)|]
ConP Singleton.S [ConP Singleton.S [ConP Singleton.Z []]]

�: runQ [t| Int -> [Int] |]
AppT (AppT ArrowT (ConT GHC.Types.Int)) (AppT ListT (ConT GHC.Types.Int))

TEMPLATE HASKELL 468

�: let g = $(runQ [| \x -> x |])

�: g 3
3

Using Language.Haskell.TH we can piece together Haskell AST element by element but subject to our
own custom logic to generate the code. This can be somewhat painful though as the source-language
(called HsSyn) to Haskell is enormous, consisting of around 100 nodes in its AST many of which are
dependent on the state of language pragmas.

-- builds the function (f = \(a,b) -> a)
f :: Q [Dec]
f = do
let f = mkName "f"
a <- newName "a"
b <- newName "b"
return [FunD f [Clause [TupP [VarP a, VarP b]] (NormalB (VarE a)) []]]

my_id :: a -> a
my_id x = $([| x |])

main = print (my_id "Hello Haskell!")

As a debugging tool it is useful to be able to dump the reified information out for a given symbol
interactively, to do so there is a simple little hack.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

import Language.Haskell.TH
import Text.Show.Pretty (ppShow)

introspect :: Name -> Q Exp
introspect n = do
t <- reify n
runIO $ putStrLn $ ppShow t
[|return ()|]

�: $(introspect 'id)
VarI
GHC.Base.id
(ForallT

[PlainTV a_1627405383]

http://hackage.haskell.org/package/template-haskell-2.4.0.0/docs/Language-Haskell-TH-Syntax.html#t:Dec

469 TEMPLATE HASKELL

[]
(AppT (AppT ArrowT (VarT a_1627405383)) (VarT a_1627405383)))

Nothing
(Fixity 9 InfixL)

�: $(introspect ''Maybe)
TyConI
(DataD

[]
Data.Maybe.Maybe
[PlainTV a_1627399528]
[NormalC Data.Maybe.Nothing []
, NormalC Data.Maybe.Just [(NotStrict , VarT a_1627399528)]
]
[])

import Language.Haskell.TH

foo :: Int -> Int
foo x = x + 1

data Bar

fooInfo :: InfoQ
fooInfo = reify 'foo

barInfo :: InfoQ
barInfo = reify ''Bar

$([d| data T = T1 | T2 |])

main = print [T1, T2]

Splices are indicated by $(f) syntax for the expression level and at the toplevel simply by invocation
of the template Haskell function. Running GHC with -ddump-splices shows our code being spliced in at
the specific location in the AST at compile-time.

$(f)

template_haskell_show.hs:1:1: Splicing declarations
f

======>
template_haskell_show.hs:8:3-10
f (a_a5bd, b_a5be) = a_a5bd

TEMPLATE HASKELL 470

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

module Splice where

import Language.Haskell.TH
import Language.Haskell.TH.Syntax

spliceF :: Q [Dec]
spliceF = do
let f = mkName "f"
a <- newName "a"
b <- newName "b"
return [FunD f [Clause [VarP a, VarP b] (NormalB (VarE a)) []]]

spliceG :: Lift a => a -> Q [Dec]
spliceG n = runQ [d| g a = n |]

{-# LANGUAGE TemplateHaskell #-}

import Splice

spliceF
spliceG "argument"

main = do
print $ f 1 2
print $ g ()

At the point of the splice all variables and types used must be in scope, so it must appear after their
declarations in the module. As a result we often have to mentally topologically sort our code when using
TemplateHaskell such that declarations are defined in order.

See: Template Haskell AST

33.6 Antiquotation
Extending our quasiquotation from above now that we have TemplateHaskell machinery we can implement
the same class of logic that it uses to pass Haskell values in and pull Haskell values out via pattern matching
on templated expressions.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE DeriveDataTypeable #-}

module Antiquote where

http://hackage.haskell.org/package/template-haskell-2.9.0.0/docs/Language-Haskell-TH.html#t:Exp

471 TEMPLATE HASKELL

import Data.Generics
import Language.Haskell.TH
import Language.Haskell.TH.Quote

import Text.Parsec
import Text.Parsec.String (Parser)
import Text.Parsec.Language (emptyDef)

import qualified Text.Parsec.Expr as Ex
import qualified Text.Parsec.Token as Tok

data Expr
= Tr
| Fl
| Zero
| Succ Expr
| Pred Expr
| Antiquote String
deriving (Eq, Show, Data, Typeable)

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser emptyDef

parens :: Parser a -> Parser a
parens = Tok.parens lexer

reserved :: String -> Parser ()
reserved = Tok.reserved lexer

identifier :: Parser String
identifier = Tok.identifier lexer

semiSep :: Parser a -> Parser [a]
semiSep = Tok.semiSep lexer

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

oper s f assoc = Ex.Prefix (reservedOp s >> return f)

table = [oper "succ" Succ Ex.AssocLeft
, oper "pred" Pred Ex.AssocLeft
]

expr :: Parser Expr
expr = Ex.buildExpressionParser [table] factor

true, false, zero :: Parser Expr
true = reserved "true" >> return Tr
false = reserved "false" >> return Fl
zero = reservedOp "0" >> return Zero

antiquote :: Parser Expr

TEMPLATE HASKELL 472

antiquote = do
char '$'
var <- identifier
return $ Antiquote var

factor :: Parser Expr
factor = true

<|> false
<|> zero
<|> antiquote
<|> parens expr

contents :: Parser a -> Parser a
contents p = do
Tok.whiteSpace lexer
r <- p
eof
return r

parseExpr :: String -> Either ParseError Expr
parseExpr s = parse (contents expr) "<stdin>" s

class Expressible a where
express :: a -> Expr

instance Expressible Expr where
express = id

instance Expressible Bool where
express True = Tr
express False = Fl

instance Expressible Integer where
express 0 = Zero
express n = Succ (express (n - 1))

exprE :: String -> Q Exp
exprE s = do
filename <- loc_filename `fmap` location
case parse (contents expr) filename s of

Left err -> error (show err)
Right exp -> dataToExpQ (const Nothing `extQ` antiExpr) exp

exprP :: String -> Q Pat
exprP s = do
filename <- loc_filename `fmap` location
case parse (contents expr) filename s of

Left err -> error (show err)
Right exp -> dataToPatQ (const Nothing `extQ` antiExprPat) exp

-- antiquote RHS

473 TEMPLATE HASKELL

antiExpr :: Expr -> Maybe (Q Exp)
antiExpr (Antiquote v) = Just embed
where embed = [| express $(varE (mkName v)) |]

antiExpr _ = Nothing

-- antiquote LHS
antiExprPat :: Expr -> Maybe (Q Pat)
antiExprPat (Antiquote v) = Just $ varP (mkName v)
antiExprPat _ = Nothing

mini :: QuasiQuoter
mini = QuasiQuoter exprE exprP undefined undefined

{-# LANGUAGE QuasiQuotes #-}

import Antiquote

-- extract
a :: Expr -> Expr
a [mini|succ $x|] = x

b :: Expr -> Expr
b [mini|succ $x|] = [mini|pred $x|]

c :: Expressible a => a -> Expr
c x = [mini|succ $x|]

d :: Expr
d = c (8 :: Integer)
-- Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))

e :: Expr
e = c True
-- Succ Tr

33.7 Templated Type Families
Just like at the value-level we can construct type-level constructions by piecing together their AST.

Type AST
---------- ----------
t1 -> t2 ArrowT `AppT` t2 `AppT` t2
[t] ListT `AppT` t
(t1,t2) TupleT 2 `AppT` t1 `AppT` t2

For example consider that type-level arithmetic is still somewhat incomplete in GHC 7.6, but there
often cases where the span of typelevel numbers is not full set of integers but is instead some bounded set

TEMPLATE HASKELL 474

of numbers. We can instead define operations with a type-family instead of using an inductive definition
(which often requires manual proofs) and simply enumerates the entire domain of arguments to the
type-family and maps them to some result computed at compile-time.

For example the modulus operator would be non-trivial to implement at type-level but instead we can
use the enumFamily function to splice in type-family which simply enumerates all possible pairs of numbers
up to a desired depth.

module EnumFamily where
import Language.Haskell.TH

enumFamily :: (Integer -> Integer -> Integer)
-> Name
-> Integer
-> Q [Dec]

enumFamily f bop upper = return decls
where

decls = do
i <- [1..upper]
j <- [2..upper]
return $ TySynInstD bop (rhs i j)

rhs i j = TySynEqn
[LitT (NumTyLit i), LitT (NumTyLit j)]
(LitT (NumTyLit (i `f` j)))

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}

import Data.Proxy
import EnumFamily
import GHC.TypeLits hiding (Mod)

type family Mod (m :: Nat) (n :: Nat) :: Nat

type family Add (m :: Nat) (n :: Nat) :: Nat

type family Pow (m :: Nat) (n :: Nat) :: Nat

enumFamily mod ''Mod 10

enumFamily (+) ''Add 10

enumFamily (^) ''Pow 10

a :: Integer
a = natVal (Proxy :: Proxy (Mod 6 4))

-- 2

475 TEMPLATE HASKELL

b :: Integer
b = natVal (Proxy :: Proxy (Pow 3 (Mod 6 4)))
-- 9

-- enumFamily mod ''Mod 3
-- ======>
-- template_typelevel_splice.hs:7:1-14
-- type instance Mod 2 1 = 0
-- type instance Mod 2 2 = 0
-- type instance Mod 2 3 = 2
-- type instance Mod 3 1 = 0
-- type instance Mod 3 2 = 1
-- type instance Mod 3 3 = 0
-- ...

In practice GHC seems fine with enormous type-family declarations although compile-time may in-
crease a bit as a result.

The singletons library also provides a way to automate this process by letting us write seemingly value-
level declarations inside of a quasiquoter and then promoting the logic to the type-level. For example if
we wanted to write a value-level and type-level map function for our HList this would normally involve
quite a bit of boilerplate, now it can stated very concisely.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE UndecidableInstances #-}

import Data.Singletons
import Data.Singletons.TH

$(promote
[d|

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x : xs) = f x : map f xs
|]

)

infixr 5 :::

data HList (ts :: [*]) where
Nil :: HList '[]

TEMPLATE HASKELL 476

(:::) :: t -> HList ts -> HList (t ': ts)

-- TypeLevel
-- MapJust :: [*] -> [Maybe *]
type MapJust xs = Map Maybe xs

-- Value Level
-- mapJust :: [a] -> [Maybe a]
mapJust :: HList xs -> HList (MapJust xs)
mapJust Nil = Nil
mapJust (x ::: xs) = Just x ::: mapJust xs

type A = [Bool, String, Double, ()]

a :: HList A
a = True ::: "foo" ::: 3.14 ::: () ::: Nil

example1 :: HList (MapJust A)
example1 = mapJust a

-- example1 reduces to example2 when expanded
example2 :: HList [Maybe Bool, Maybe String, Maybe Double, Maybe ()]
example2 = Just True ::: Just "foo" ::: Just 3.14 ::: Just () ::: Nil

33.8 Templated Type Classes
Probably the most common use of Template Haskell is the automatic generation of type-class instances.
Consider if we wanted to write a simple Pretty printing class for a flat data structure that derived the ppr
method in terms of the names of the constructors in the AST we could write a simple instance.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

module Class where

import Language.Haskell.TH

class Pretty a where
ppr :: a -> String

normalCons :: Con -> Name
normalCons (NormalC n _) = n

getCons :: Info -> [Name]
getCons cons = case cons of

TyConI (DataD _ _ _ tcons _) -> map normalCons tcons
con -> error $ "Can't derive for:" ++ (show con)

477 TEMPLATE HASKELL

pretty :: Name -> Q [Dec]
pretty dt = do
info <- reify dt
Just cls <- lookupTypeName "Pretty"
let datatypeStr = nameBase dt
let cons = getCons info
let dtype = mkName (datatypeStr)
let mkInstance xs =

InstanceD
[] -- Context
(AppT

(ConT cls) -- Instance
(ConT dtype)) -- Head

[(FunD (mkName "ppr") xs)] -- Methods
let methods = map cases cons
return $ [mkInstance methods]

-- Pattern matches on the ``ppr`` method
cases :: Name -> Clause
cases a = Clause [ConP a []] (NormalB (LitE (StringL (nameBase a)))) []

In a separate file invoke the pretty instance at the toplevel, and with --ddump-splice if we want to
view the spliced class instance.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

import Class

data PlatonicSolid
= Tetrahedron
| Cube
| Octahedron
| Dodecahedron
| Icosahedron

pretty ''PlatonicSolid

main :: IO ()
main = do
putStrLn (ppr Octahedron)
putStrLn (ppr Dodecahedron)

33.9 Multiline Strings
Haskell has no language support for multiline string literals, although we can emulate this by using a
quasiquoter. The resulting String literal is then converted using toString into whatever result type is
desired.

TEMPLATE HASKELL 478

{-# LANGUAGE TemplateHaskell #-}

module Multiline (s) where

import Data.String
import Language.Haskell.TH.Quote

s :: QuasiQuoter
s = QuasiQuoter
{ quoteExp = (\a -> [|fromString a|]) . trim
, quotePat = _ -> fail "illegal raw string QuasiQuote"
, quoteType = _ -> fail "illegal raw string QuasiQuote"
, quoteDec = _ -> fail "illegal raw string QuasiQuote"
}

trim :: String -> String
trim ('\n':xs) = xs
trim xs = xs

In a separate module we can then enable Quasiquotes and embed the string.

{-# LANGUAGE QuasiQuotes #-}

import Multiline (s)
import qualified Data.Text as T

foo :: T.Text
foo = [s|
This
is
my
multiline
string
|]

33.10 Path Files

Oftentimes it is necessary to embed the specific Git version hash of a build inside the executable. Using
git-embed the compiler will effectively shell out to the command line to retrieve the version information of
the CWD Git repository and use Template Haskell to define embed this information at compile-time. This
is often useful for embedding in --version information in the command line interface to your program or
service.

This example also makes use of the Cabal Paths_pkgname module during compile time which contains
which contains several functions for querying target paths and included data files for the Cabal project.
This can be included in the exposed-modules of a package to be accessed directly by the project, otherwise
it is placed automatically in other-modules .

479 TEMPLATE HASKELL

version :: Version
getBinDir :: IO FilePath
getLibDir :: IO FilePath
getDataDir :: IO FilePath
getLibexecDir :: IO FilePath
getSysconfDir :: IO FilePath
getDataFileName :: FilePath -> IO FilePath

An example of usage to query the Git metadata into the compiled binary of a project using the
git-embed package:

{-# LANGUAGE TemplateHaskell #-}

import Git.Embed
import Data.Version
import Paths_myprog

gitRev :: String
gitRev = $(embedGitShortRevision)

gitBranch :: String
gitBranch = $(embedGitBranch)

ver :: String
ver = showVersion Paths_myprog.version

TEMPLATE HASKELL 480

Chapter 34

Categories

34.1 Do I need to Learn Category Theory?
Short answer: No. Most of the ideas of category theory aren’t really applicable to writing Haskell.

The long answer: It is not strictly necessary to learn, but so few things in life are. Learning new topics
and ways of thinking about problems only enrich your thinking and give you new ways of thinking about
code and abstractions. Category theory is never going to help you write a web application better, but
it may give you insights into problems that are algebraic in nature. A tiny group of Haskellers espouse
philosophies about it being an inspiration for certain abstractions, but most do not.

Some understanding of abstract algebra, and conventions for discussing algebraic structures and equa-
tional reasoning with laws are essential to modern Haskell and we will discuss these leading up to some
basic category theory.

34.2 Abstract Algebra
Algebraic theory taught at higher levels generalises notions of arithmetic to operate over more generic
structures than simple numbers. These structures are called sets and are a very broad notion of generic
ways of describing groups of mathematical objects that can be equated and grouped. Over these sets
we can define ways of combining and operating over elements of the set. These generalised notions of
arithmetic are described in terms of and operations. Operations which take elements of a set to the
same set are said to be closed in the set. When discussing operations we use the conventions:

• Properties - Predicates attached to values and operations over a set.
• Binary Operations - Operations which map two elements.
• Unary Operations - Operations which map a single element.
• Constants - Specific values with specific properties in a set.
• Relations - Pairings of elements in a set.

Binary operations are generalisations of operations like multiplication and addition. That map two
elements of a set to another element of a set. Unary operations map an element of a set to a single element
of a set. Ternary operations map three elements. Higher-level operations are usually not given specific
names.

Constants are specific elements of the set, that generalise values like 0 and 1 which have specific laws
in relation to the operations defined over the set.

Certain properties show up so frequently we typically refer to their properties by an algebraic term.
These terms are drawn from an equivalent abstract algebra concept. Several of the common algebraic
laws are defined in the table below.

481

CATEGORIES 482

Associativity
Equations:

a × (b × c) = (a × b) × c

Haskell:

a `op` (b `op` c) = (a `op` b) `op` c

Haskell Predicate:

associative :: Eq a => (a -> a -> a) -> a -> a -> a -> Bool
associative op x y z = (x `op` y) `op` z == x `op` (y `op` z)

Commutativity
Equations:

a × b = b × a

Haskell:

a `op` b = b `op` a

Haskell Predicates:

commutative :: Eq a => (b -> b -> a) -> b -> b -> Bool
commutative op x y = x `op` y == y `op` x

Units
Equations:

a × e = a

e × a = a

Haskell:

a `op` e = a
e `op` a = a

483 CATEGORIES

Haskell Predicates:

leftIdentity :: Eq a => (b -> a -> a) -> b -> a -> Bool
leftIdentity op y x = y `op` x == x

rightIdentity :: Eq a => (a -> b -> a) -> b -> a -> Bool
rightIdentity op y x = x `op` y == x

identity :: Eq a => (a -> a -> a) -> a -> a -> Bool
identity op x y = leftIdentity op x y && rightIdentity op x y

Inversion
Equations:

a−1 × a = e

a × a−1 = e

Haskell:

(inv a) `op` a = e
a `op` (inv a) = e

Haskell Predicates:

leftInverse :: Eq a => (b -> b -> a) -> (b -> b) -> a -> b -> Bool
leftInverse op inv y x = inv x `op` x == y

rightInverse :: Eq a => (b -> b -> a) -> (b -> b) -> a -> b -> Bool
rightInverse op inv y x = x `op` inv x == y

inverse :: Eq a => (b -> b -> a) -> (b -> b) -> a -> b -> Bool
inverse op inv y x = leftInverse op inv y x && rightInverse op inv y x

Zeros
Equations:

a × 0 = 0

0 × a = 0

Haskell

CATEGORIES 484

a `op` e = e
e `op` a = e

Haskell Predicates:

leftZero :: Eq a => (a -> a -> a) -> a -> a -> Bool
leftZero = flip . rightIdentity

rightZero :: Eq a => (a -> a -> a) -> a -> a -> Bool
rightZero = flip . leftIdentity

zero :: Eq a => (a -> a -> a) -> a -> a -> Bool
zero op x y = leftZero op x y && rightZero op x y

Linearity
Equations:

f(x + y) = f(x) + f(y)
Haskell:

f (x `op` y) = f x `op` f y

Haskell Predicates:

linear :: Eq a => (a -> a) -> (a -> a -> a) -> a -> a -> Bool
linear f (#) x y = f (x # y) == ((f x) # (f y))

Idempotency
Equations:

f(f(x)) = f(x)

f (f x) = f x

Haskell Predicates:

idempotent :: Eq a => (a -> a) -> a -> Bool
idempotent f x = f (f x)

485 CATEGORIES

Distributivity
Equations:

a × (b + c) = (a × b) + (a × c)

(b + c) × a = (b × a) + (c × a)
Haskell:

a `f` (b `g` c) = (a `f` b) `g` (a `f` c)
(b `g` c) `f` a = (b `f` a) `g` (c `f` a)

Haskell Predicates:

leftDistributive :: Eq a => (a -> b -> a) -> (a -> a -> a) -> b -> a -> a -> Bool
leftDistributive (#) op x y z = (y `op` z) # x == (y # x) `op` (z # x)

rightDistributive :: Eq a => (b -> a -> a) -> (a -> a -> a) -> b -> a -> a -> Bool
rightDistributive (#) op x y z = x # (y `op` z) == (x # y) `op` (x # z)

distributivity :: Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> a -> Bool
distributivity op op' x y z = op (op' x y) z == op' (op x z) (op y z)

&& op x (op' y z) == op' (op x y) (op x z)

Anticommutativity
Equations:

a × b = (b × a)−1

Haskell:

a `op` b = inv (b `op` a)

Haskell Predicates:

anticommutative :: Eq a => (a -> a) -> (a -> a -> a) -> a -> a -> Bool
anticommutative inv op x y = x `op` y == inv (y `op` x)

Homomorphisms
Equations:

f(x × y) = f(x) + f(y)
Haskell:

CATEGORIES 486

f (a `op0` b) = (f a) `op1` (f b)

Haskell Predicates:

homomorphism :: Eq a =>
(b -> a) -> (b -> b -> b) -> (a -> a -> a) -> b -> b -> Bool

homomorphism f op0 op1 x y = f (x `op0` y) == f x `op1` f y

Combinations of these properties over multiple functions gives rise to higher order systems of relations
that occur over and over again throughout functional programming, and once we recognize them we can
abstract over them. For instance a monoid is a combination of a unit and a single associative operation
over a set of values.

You will often see this notation in tuple form. Where a set S (called the carrier) will be enriched
with a variety of operations and elements that are closed over that set. For example a semigroup is a set
equipped with an associative closed binary operation. If you add an identity element e to the semigroup
you get a monoid.

Structure Notation
Semigroup (S,)
Monoid (S, , e)
Monad (S, µ, η)

34.3 Categories
The most basic structure is a category which is an algebraic structure of objects (Obj) and morphisms
(Hom) with the structure that morphisms compose associatively and the existence of an identity morphism
for each object. A category is defined entirely in terms of its:

• Elements
• Morphisms
• Composition Operation

A morphism f written as f : x → y an abstraction on the algebraic notion of homomorphisms. It is
an arrow between two objects in a category x and y called the domain and codomain respectively. The
set of all morphisms between two given elements x and y is called the hom-set and written Hom(x, y).

In Haskell, with kind polymorphism enabled we can write down the general category parameterized by
a type variable “c” for category. This is the instance Hask the category of Haskell types with functions
between types as morphisms.

{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Prelude hiding ((.), id)

487 CATEGORIES

-- Morphisms
type (a ~> b) c = c a b

class Category (c :: k -> k -> *) where
id :: (a ~> a) c
(.) :: (y ~> z) c -> (x ~> y) c -> (x ~> z) c

type Hask = (->)

instance Category Hask where
id x = x
(f . g) x = f (g x)

Categories are interesting since they exhibit various composition properties and ways in which various
elements in the category can be composed and rewritten while preserving several invariants about the
program.

Some annoying curmudgeons will sometimes pit nicks about this not being a “real category” because
all Haskell values are potentially inhabited by a bottom type which violates several rules of composition.
This is mostly silly nit-picking and for the sake of discussion we’ll consider “ideal Haskell” which does not
have this property.

34.4 Isomorphisms
Two objects of a category are said to be isomorphic if we can construct a morphism with 2-sided inverse
that takes the structure of an object to another form and back to itself when inverted.

f :: a -> b
f' :: b -> a

Such that:

f . f' = id
f' . f = id

For example the types Either () a and Maybe a are isomorphic.

{-# LANGUAGE ExplicitForAll #-}

data Iso a b = Iso { to :: a -> b, from :: b -> a }

f :: forall a. Maybe a -> Either () a
f (Just a) = Right a
f Nothing = Left ()

f' :: forall a. Either () a -> Maybe a

CATEGORIES 488

f' (Left _) = Nothing
f' (Right a) = Just a

iso :: Iso (Maybe a) (Either () a)
iso = Iso f f'

data V = V deriving Eq

ex1 = f (f' (Right V)) == Right V
ex2 = f' (f (Just V)) == Just V

data Iso a b = Iso { to :: a -> b, from :: b -> a }

instance Category Iso where
id = Iso id id
(Iso f f') . (Iso g g') = Iso (f . g) (g' . f')

34.5 Duality
One of the central ideas is the notion of duality, that reversing some internal structure yields a new
structure with a “mirror” set of theorems. The dual of a category reverse the direction of the morphisms
forming the category COp.

import Control.Category
import Prelude hiding ((.), id)

newtype Op a b = Op (b -> a)

instance Category Op where
id = Op id
(Op f) . (Op g) = Op (g . f)

See:

• Duality for Haskellers

34.6 Functors
Functors are mappings between the objects and morphisms of categories that preserve identities and
composition.

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeSynonymInstances #-}

http://blog.ezyang.com/2012/10/duality-for-haskellers/

489 CATEGORIES

import Control.Category
import Prelude hiding (Functor, fmap, id)

class (Category c, Category d) => Functor c d t where
fmap :: c a b -> d (t a) (t b)

type Hask = (->)

instance Functor Hask Hask [] where
fmap f [] = []
fmap f (x : xs) = f x : (fmap f xs)

fmap id � id
fmap (a . b) � (fmap a) . (fmap b)

34.7 Natural Transformations
Natural transformations are mappings between functors that are invariant under interchange of morphism
composition order.

type Nat f g = forall a. f a -> g a

Such that for a natural transformation h we have:

fmap f . h � h . fmap f

The simplest example is between (f = List) and (g = Maybe) types.

headMay :: forall a. [a] -> Maybe a
headMay [] = Nothing
headMay (x:xs) = Just x

Regardless of how we chase safeHead , we end up with the same result.

fmap f (headMay xs) � headMay (fmap f xs)

CATEGORIES 490

fmap f (headMay [])
= fmap f Nothing
= Nothing

headMay (fmap f [])
= headMay []
= Nothing

fmap f (headMay (x:xs))
= fmap f (Just x)
= Just (f x)

headMay (fmap f (x:xs))
= headMay [f x]
= Just (f x)

Or consider the Functor (->) .

f :: (Functor t)
=> (->) a b
-> (->) (t a) (t b)

f = fmap

g :: (b -> c)
-> (->) a b
-> (->) a c

g = (.)

c :: (Functor t)
=> (b -> c)
-> (->) (t a) (t b)
-> (->) (t a) (t c)

c = f . g

f . g x = c x . g

A lot of the expressive power of Haskell types comes from the interesting fact that, with a few caveats,
polymorphic Haskell functions are natural transformations.

See: You Could Have Defined Natural Transformations

34.8 Kleisli Category
Kleisli composition (i.e. Kleisli Fish) is defined to be:

http://blog.sigfpe.com/2008/05/you-could-have-defined-natural.html

491 CATEGORIES

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
f >=> g � \x -> f x >>= g

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
(<=<) = flip (>=>)

The monad laws stated in terms of the Kleisli category of a monad m are stated much more symmet-
rically as one associativity law and two identity laws.

(f >=> g) >=> h � f >=> (g >=> h)
return >=> f � f
f >=> return � f

Stated simply that the monad laws above are just the category laws in the Kleisli category.

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ExplicitForAll #-}

import Control.Monad
import Control.Category
import Prelude hiding ((.))

-- Kleisli category
newtype Kleisli m a b = K (a -> m b)

-- Kleisli morphisms (a -> m b)
type (a :~> b) m = Kleisli m a b

instance Monad m => Category (Kleisli m) where
id = K return
(K f) . (K g) = K (f <=< g)

just :: (a :~> a) Maybe
just = K Just

left :: forall a b. (a :~> b) Maybe -> (a :~> b) Maybe
left f = just . f

right :: forall a b. (a :~> b) Maybe -> (a :~> b) Maybe
right f = f . just

For example, Just is just an identity morphism in the Kleisli category of the Maybe monad.

Just >=> f � f
f >=> Just � f

CATEGORIES 492

34.9 Monoidal Categories
On top of the basic category structure there are other higher-level objects that can be constructed that
enrich the category with additional operations.

• A bifunctor is a functor whose domain is the product of two categories.
• A monoidal category is a category which has a tensor product and a unit object.
• A braided monoidal category is a category which has tensor product and an operation braid

which swaps elements in the tensor product.
• A cartesian monoidal category is a is a monoidal category with, binary product, and diagonal.
• A cartesian closed category has is a monoidal category with a terminal object, binary products

and exponential objects.

{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FunctionalDependencies #-}

import Prelude hiding ((.))

class Category k where
id :: k a a
(.) :: k b c -> k a b -> k a c

class Category k => Bifunctor k p where
bimap :: k a b -> k a' b' -> k (p a a') (p b b')

class Bifunctor k p => Associative k p where
associate :: k (p (p a b) c) (p a (p b c))
coassociate :: k (p a (p b c)) (p (p a b) c)

class Associative k p => Monoidal k p i | k p -> i where
idl :: k (p i a) a
idr :: k (p a i) a
coidl :: k a (p i a)
coidr :: k a (p a i)

class Braided k p where
braid :: k (p a b) (p b a)

class (Monoidal k prod i, Braided k prod) => Cartesian k prod i | k -> prod i where
fst :: k (prod a b) a
snd :: k (prod a b) b
diag :: k a (prod a a)
(&&&) :: k a b -> k a c -> k a (prod b c)
f &&& g = (f `bimap` g) . diag

class Cartesian k p i => CCC k p i e | k -> p i e where
apply :: k (p (e a b) a) b
curry :: k (p a b) c -> k a (e b c)
uncurry :: k a (e b c) -> k (p a b) c

An example of this tower is is the Hask with (->) as exponential, (,) as product and () as unit
object.

493 CATEGORIES

type Hask = (->)

instance Category (->) where
id = Prelude.id
(.) = (Prelude..)

instance Bifunctor (->) (,) where
bimap f g = \(a,b) -> (f a,g b)

instance Associative (->) (,) where
associate ((a,b),c) = (a,(b,c))
coassociate (a,(b,c)) = ((a,b),c)

instance Monoidal (->) (,) () where
idl ((),a) = a
idr (a,()) = a
coidl a = ((),a)
coidr a = (a,())

instance Braided (->) (,) where
braid (a,b) = (b,a)

instance Cartesian (->) (,) () where
fst = Prelude.fst
snd = Prelude.snd
diag x = (x,x)

instance CCC (->) (,) () (->) where
apply (f,a) = f a
curry = Prelude.curry
uncurry = Prelude.uncurry

34.10 Further Resources
Category theory is an entire branch of mathematics that should be studeid independently of Haskell and
programming. The classic text is “Category Theory” by Awodey. This text assumes a undergraduate level
mathematics background.

• Category Theory, Awodey

For a programming perspective there are several lectures and functional programming oriented re-
sources:

• Category Theory for Programmers PDF
• Category Theory for Programmers Lectures
• Category Theory Foundations

http://www.amazon.com/Category-Theory-Oxford-Logic-Guides/dp/0199237182
https://github.com/hmemcpy/milewski-ctfp-pdf
https://www.youtube.com/watch?v=I8LbkfSSR58&list=PLbgaMIhjbmEnaH_LTkxLI7FMa2HsnawM_
https://www.youtube.com/watch?v=ZKmodCApZwk

CATEGORIES 494

Chapter 35

Source Code

All code is available from this Github repository. This code is dedicated to the public domain. You
can copy, modify, distribute and perform the work, even for commercial purposes, all without asking
permission.

https://github.com/sdiehl/wiwinwlh
Chapters:

• 01-basics/
• 02-monads/
• 03-monad-transformers/
• 04-extensions/
• 05-laziness/
• 06-prelude/
• 07-text-bytestring/
• 08-applicatives/
• 09-errors/
• 10-advanced-monads/
• 11-quantification/
• 12-gadts/
• 13-lambda-calculus/
• 14-interpreters/
• 15-testing/
• 16-type-families/
• 17-promotion/
• 18-generics/
• 19-numbers/
• 20-data-structures/
• 21-ffi/
• 22-concurrency/
• 23-graphics/
• 24-parsing/
• 25-streaming/
• 26-data-formats/
• 27-web/
• 28-databases/
• 29-ghc/
• 30-languages/
• 31-template-haskell/
• 32-cryptography/
• 33-categories/
• 34-time/

495

https://github.com/sdiehl/wiwinwlh/tree/master/src/01-basics/
https://github.com/sdiehl/wiwinwlh/tree/master/src/02-monads/
https://github.com/sdiehl/wiwinwlh/tree/master/src/03-monad-transformers/
https://github.com/sdiehl/wiwinwlh/tree/master/src/04-extensions/
https://github.com/sdiehl/wiwinwlh/tree/master/src/05-laziness/
https://github.com/sdiehl/wiwinwlh/tree/master/src/06-prelude/
https://github.com/sdiehl/wiwinwlh/tree/master/src/07-text-bytestring/
https://github.com/sdiehl/wiwinwlh/tree/master/src/08-applicatives/
https://github.com/sdiehl/wiwinwlh/tree/master/src/09-errors/
https://github.com/sdiehl/wiwinwlh/tree/master/src/10-advanced-monads/
https://github.com/sdiehl/wiwinwlh/tree/master/src/11-quantification/
https://github.com/sdiehl/wiwinwlh/tree/master/src/12-gadts/
https://github.com/sdiehl/wiwinwlh/tree/master/src/13-lambda-calculus/
https://github.com/sdiehl/wiwinwlh/tree/master/src/14-interpreters/
https://github.com/sdiehl/wiwinwlh/tree/master/src/15-testing/
https://github.com/sdiehl/wiwinwlh/tree/master/src/16-type-families/
https://github.com/sdiehl/wiwinwlh/tree/master/src/17-promotion/
https://github.com/sdiehl/wiwinwlh/tree/master/src/18-generics/
https://github.com/sdiehl/wiwinwlh/tree/master/src/19-numbers/
https://github.com/sdiehl/wiwinwlh/tree/master/src/20-data-structures/
https://github.com/sdiehl/wiwinwlh/tree/master/src/21-ffi/
https://github.com/sdiehl/wiwinwlh/tree/master/src/22-concurrency/
https://github.com/sdiehl/wiwinwlh/tree/master/src/23-graphics/
https://github.com/sdiehl/wiwinwlh/tree/master/src/24-parsing/
https://github.com/sdiehl/wiwinwlh/tree/master/src/25-streaming/
https://github.com/sdiehl/wiwinwlh/tree/master/src/26-data-formats/
https://github.com/sdiehl/wiwinwlh/tree/master/src/27-web/
https://github.com/sdiehl/wiwinwlh/tree/master/src/28-databases/
https://github.com/sdiehl/wiwinwlh/tree/master/src/29-ghc/
https://github.com/sdiehl/wiwinwlh/tree/master/src/30-languages/
https://github.com/sdiehl/wiwinwlh/tree/master/src/31-template-haskell/
https://github.com/sdiehl/wiwinwlh/tree/master/src/32-cryptography
https://github.com/sdiehl/wiwinwlh/tree/master/src/33-categories/
https://github.com/sdiehl/wiwinwlh/tree/master/src/34-time/

	Basics
	What is Haskell?
	How to Read
	GHC
	ghcup
	Package Managers
	Project Structure
	Cabal
	Cabal New-Build
	Local Packages
	Version Bounds
	Stack
	Hpack
	Base
	Prelude
	Modern Haskell
	Flags
	Hackage
	Stackage
	GHCi
	.ghci.conf
	Editor Integration
	Linux Packages
	Names
	Modules
	Functions
	Types
	Type Signatures
	Currying
	Algebraic Datatypes
	Lists
	Pattern Matching
	Guards
	Operators and Sections
	Tuples
	Where & Let Clauses
	Conditionals
	Function Composition
	List Comprehensions
	Comments
	Typeclasses
	Side Effects
	Records
	Pragmas
	Newtypes
	Bottoms
	Exhaustiveness
	Debugger
	Stack Traces
	Printf Tracing
	Type Inference
	Type Holes
	Deferred Type Errors
	Name Conventions
	ghcid
	HLint
	Docker Images
	Continuous Integration
	Ormolu
	Haddock
	Unsafe Functions

	Monads
	Eightfold Path to Monad Satori
	Monad Myths
	Monad Methods
	Monad Laws
	Do Notation
	Maybe Monad
	List Monad
	IO Monad
	What's the point?
	Reader Monad
	Writer Monad
	State Monad
	Why are monads confusing?

	Monad Transformers
	mtl / transformers
	Transformers
	Basics
	mtl
	ReaderT
	Newtype Deriving
	Efficiency
	Monad Morphisms
	Effect Systems
	Polysemy
	Fused Effects

	Language Extensions
	Philosophy
	Classes
	Extension Dependencies
	The Benign
	The Advanced
	The Lowlevel
	The Dangerous
	NoMonomorphismRestriction
	ExtendedDefaultRules
	Safe Haskell
	PartialTypeSignatures
	RecursiveDo
	ApplicativeDo
	PatternGuards
	ViewPatterns
	TupleSections
	Postfix Operators
	MultiWayIf
	EmptyCase
	LambdaCase
	NumDecimals
	PackageImports
	RecordWildCards
	NamedFieldPuns
	PatternSynonyms
	DeriveFunctor
	DeriveFoldable
	DeriveTraversable
	DeriveGeneric
	DeriveAnyClass
	DuplicateRecordFields
	OverloadedLabels
	CPP
	TypeApplications
	DerivingVia
	DerivingStrategies
	Historical Extensions

	Type Class Extensions
	Standard Hierarchy
	Instance Search
	Orphan Instances
	Minimal Annotations
	TypeSynonymInstances
	FlexibleInstances
	FlexibleContexts
	OverlappingInstances
	IncoherentInstances

	Laziness
	Strictness
	Seq and WHNF
	Thunks
	BangPatterns
	StrictData
	Strict
	Deepseq
	Irrefutable Patterns
	The Debate

	Prelude
	What to Avoid?
	What Should be in Prelude
	Custom Preludes
	Preludes
	Protolude
	Partial Functions
	Replacing Partiality
	Boolean Blindness
	Foldable / Traversable

	Strings
	String
	String Conversions
	OverloadedStrings
	Text
	Text.Builder
	ByteString
	Printf
	Overloaded Lists
	Regex
	Escaping Text
	String Splitting

	Applicatives
	Alternative
	Arrows
	Bifunctors
	Polyvariadic Functions

	Error Handling
	Either Monad
	ExceptT
	Control.Exception
	Exceptions
	Spoon

	Advanced Monads
	Function Monad
	RWS Monad
	Cont
	MonadPlus
	MonadFail
	MonadFix
	ST Monad
	Free Monads
	Indexed Monads
	Lifted Base

	Quantification
	Universal Quantification
	Free Theorems
	Type Systems
	Rank-N Types
	Existential Quantification
	Impredicative Types
	Scoped Type Variables

	GADTs
	Kind Signatures
	Void
	Phantom Types
	Typelevel Operations

	Interpreters
	HOAS
	PHOAS
	Final Interpreters
	Finally Tagless
	Datatypes
	F-Algebras
	Recursion Schemes & The Morphism Zoo
	Hint and Mueval

	Testing
	QuickCheck
	SmallCheck
	QuickSpec
	Tasty
	Silently

	Type Families
	MultiParam Typeclasses
	Type Families
	Injectivity
	Roles
	NonEmpty
	Manual Proofs
	Constraint Kinds
	TypeFamilyDependencies

	Promotion
	Higher Kinded Types
	Kind Polymorphism
	Data Kinds
	Size-Indexed Vectors
	Typelevel Numbers
	Typelevel Strings
	Custom Errors
	Type Equality
	Proxies
	Promoted Syntax
	Singleton Types
	Closed Type Families
	Kind Indexed Type Families
	HLists
	Typelevel Dictionaries
	Advanced Proofs
	Liquid Haskell

	Generics
	Generic
	Generic Deriving
	Typeable
	Dynamic Types
	Data
	Uniplate

	Mathematics
	Numeric Tower
	GMP Integers
	Complex Numbers
	Decimal & Scientific Types
	Polynomial Arithmetic
	Combinatorics
	Number Theory
	Stochastic Calculus
	Differential Equations
	Statistics & Probability
	Constructive Reals
	SAT Solvers
	SMT Solvers

	Data Structures
	Map
	Tree
	Set
	Vector
	Mutable Vectors
	Unordered Containers
	Hashtables
	Graphs
	Graph Theory
	DList
	Sequence

	FFI
	Pure Functions
	Storable Arrays
	Function Pointers
	hsc2hs

	Concurrency
	Sparks
	Threads
	IORef
	MVars
	TVar
	Chans
	Semaphores
	Threadscope
	Strategies
	STM
	Monad Par
	Async

	Parsing
	Parsec
	Custom Lexer
	Simple Parsing
	Megaparsec
	Attoparsec
	Configurator
	Optparse Applicative
	Happy & Alex

	Streaming
	Lazy IO
	Pipes
	ZeroMQ
	Conduits

	Cryptography
	SHA Hashing
	Password Hashing
	Curve25519 Diffie-Hellman
	Ed25519 EdDSA
	Secure Memory Handling
	AES Encryption
	Galois Fields
	Elliptic Curves
	Pairing Cryptography
	zkSNARKs

	Dates and Times
	time
	ISO8601

	Data Formats
	JSON
	Yaml
	CSV

	Network & Web Programming
	Frameworks
	HTTP Requests
	Req
	Blaze
	Lucid
	Hastache
	Warp
	Scotty
	Servant

	Databases
	Postgres
	Sqlite
	Redis
	Acid State
	Selda

	GHC
	Compiler Design
	GHC API
	DynFlags
	Package Databases
	HIE Bios
	Abstract Syntax Tree
	Parser
	Outputable
	Datatypes
	Core
	Inliner
	Primops
	SIMD Intrinsics
	Rewrite Rules
	Boot Libraries
	Dictionaries
	Specialization
	Static Compilation
	Unboxed Types
	IO/ST
	ghc-heap-view
	STG
	Worker/Wrapper
	Z-Encoding
	Cmm
	Inline CMM
	Optimisation
	Interface Files
	Runtime System

	Profiling
	Criterion
	EKG
	RTS Profiling

	Compilers
	Unbound
	Unbound Generics
	Pretty Printers
	prettyprinter
	pretty-simple
	Haskeline
	Repline
	LLVM

	Template Haskell
	Metaprogramming
	Quasiquotation
	language-c-quote
	GPU Kernels
	Template Haskell
	Antiquotation
	Templated Type Families
	Templated Type Classes
	Multiline Strings
	Path Files

	Categories
	Do I need to Learn Category Theory?
	Abstract Algebra
	Categories
	Isomorphisms
	Duality
	Functors
	Natural Transformations
	Kleisli Category
	Monoidal Categories
	Further Resources

	Source Code

